

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

WEB SERVICES INTEGRATION ON THE FLY

by

Hoe Wai Leong

December 2008

 Thesis Advisor: Don Brutzman
 Co-Advisor: Curtis Blais
 Second Reader: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Web Services Integration on the Fly
6. AUTHOR: Hoe Wai Leong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT
In a net-centric environment, data, tools and people operate in a distributed network. A key research question is

whether a software framework can become so usable and intelligent that integration of web services can be done on-the-fly as
self-integration. Given data, software agents and supporting software infrastructure, web services integration on the fly means
that human coding is not required to integrate web services into a Web Service Architecture. This thesis explores a generic,
flexible, scalable, usable and intelligent web services architecture framework that enables sharing and integration of data and
tools on the fly. This software framework is a key enabler for systems of systems architecture in a net-centric environment. The
envisioned Web Service Architecture Intelligent Framework (WSAIF) is applied to the Modeling, Virtual Environments and
Simulation (MOVES) domain. Specifically, the framework is applied to provide the capability to search and retrieve
visualization models and their matching behavior models in a collaborative environment.

This thesis elaborates on the design, implementation, deployment and test results of web services for the Scenario
Authoring and Visualization for Advanced Graphical Environments (SAVAGE) archive, which is a set of web-based 3D
graphics models plus corresponding agent-behaviour models. SAVAGE web services can perform both “find” and “get”
operations for models in the archives. SAVAGE web services operations can be composed to form business processes. These
business processes can be expressed using modeling techniques such as Web Service Business Process Execution Language
(WSBPEL). Future capabilities include semantic activities using Web Ontology Language for Services (OWL-S). The study
and comparison of various modeling techniques that enable integration, orchestration and adaptation of composable web
services is mentioned. The design and implementation approach matches industry best practices for information architectures.
The modeling techniques are essential to and will eventually be used in WSAIF Orchestration and Adaptation components.
This thesis further explores how WSAIF software agents, modeling data and supporting software infrastructure can someday
enable web services integration on the fly and concludes with recommendations for future work.

15. NUMBER OF
PAGES
214

14. SUBJECT TERMS
Service Oriented Architecture, Web Services Architecture, Semantic Web Services, Software Agents,
X3D Graphics, SAVAGE Model Archives

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

WEB SERVICES INTEGRATION ON THE FLY

Hoe Wai Leong
Civilian, DSO National Laboratories, Singapore

B.S., National University of Singapore, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Author: Hoe Wai Leong

Approved by: Don Brutzman

Thesis Advisor

Curtis Blais
Co-Advisor

Don McGregor
Second Reader

Mathias Kolsch
Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In a net-centric environment, data, tools and people operate in a distributed

network. A key research question is whether a software framework can become so usable

and intelligent that integration of web services can be done on-the-fly as self-integration.

Given data, software agents and supporting software infrastructure, web services

integration on the fly means that human coding is not required to integrate web services

into a Web Service Architecture. This thesis explores a generic, flexible, scalable, usable

and intelligent web services architecture framework that enables sharing and integration

of data and tools on the fly. This software framework is a key enabler for systems of

systems architecture in a net-centric environment. The envisioned Web Service

Architecture Intelligent Framework (WSAIF) is applied to the Modeling, Virtual

Environments and Simulation (MOVES) domain. Specifically, the framework is applied

to provide the capability to search and retrieve visualization models and their matching

behavior models in a collaborative environment.

This thesis elaborates on the design, implementation, deployment and test results

of web services for the Scenario Authoring and Visualization for Advanced Graphical

Environments (SAVAGE) archive, which is a set of web-based 3D graphics models plus

corresponding agent-behaviour models. SAVAGE web services can perform both “find”

and “get” operations for models in the archives. SAVAGE web services operations can

be composed to form business processes. These business processes can be expressed

using modeling techniques such as Web Service Business Process Execution Language

(WSBPEL). Future capabilities include semantic activities using Web Ontology

Language for Services (OWL-S). The study and comparison of various modeling

techniques that enable integration, orchestration and adaptation of composable web

services is mentioned. The design and implementation approach matches industry best

practices for information architectures. The modeling techniques are essential to and will

eventually be used in WSAIF Orchestration and Adaptation components. This thesis

 vi

further explores how WSAIF software agents, modeling data and supporting software

infrastructure can someday enable web services integration on the fly and concludes with

recommendations for future work.

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. PROBLEM DESCRIPTION...2
C. MOTIVATION ..2
D. APPROACH...3
E. THESIS ORGANIZATION..4

II. BACKGROUND AND RELATED WORK ..5
A. INTRODUCTION..5
B. SOFTWARE ARCHITECTURE...5

1. Architecture Qualities ...5
a. Reliability...5
b. Performance ..6
c. Scalability ..6
d. Security ..6
e. Maintainability ..7

2. Design Patterns and Object Oriented Programming7
3. Model-Driven Architecture (MDA)..8
4. Unified Modeling Language (UML)...8
5. Middleware and Interoperability ...9
6. Software Agents ...10

C. SERVICE ORIENTED ARCHITECTURE (SOA)....................................11
D. WEB SERVICES ARCHITECTURE (WSA)...12
E. WEB SERVICES ...14
F. SEMANTIC WEB SERVICES ARCHITECTURE (SWSA)14
G. SWSA AND SOFTWARE AGENTS INTEROPERABILITY14
H. SEMANTIC WEB TECHNOLOGIES..15

1. Resource Description Framework (RDF) and RDF Schema
(RDFS) ..15

2. Web Ontology Language (OWL) ...16
a. OWL-Full ..16
b. OWL-Description Logic (OWL-DL).......................................17
c. OWL-Lite...17

3. Rule Interchange Format (RIF) ...17
I. SEMANTIC WEB SERVICES...17

1. Web Ontology Language for Services (OWL-S).............................17
2. Web Service Modeling Ontology (WSMO)19

J. WEB SERVICES BUSINESS PROCESS EXECUTION LANGUAGE
(WSBPEL) ..22

K. WEB SERVICES CHOREOGRAPHY DESCRIPTION LANGUAGE
(WS-CDL)...22

L. WEB SERVICES SECURITY (WS-SECURITY)......................................23
M. VISUALIZATION AND BEHAVIOR MODELING.................................24

 viii

1. Extensible 3D (X3D) Graphics..24
2. Discrete Event Simulation (DES) ...25
3. SAVAGE Modeling and Analysis Language (SMAL)....................26
4. Defense Model Archives ..27

N. NETBEANS 6.1 AND VERSION CONTROL..28
1. NetBeans Integrated Development Environment (IDE)28
2. Forward and Reverse Engineering...28
3. Implementation using NetBeans...29
4. Subversion (SVN) for Version Control in NetBeans29

O. PROTÉGÉ AUTHORING TOOL FOR SEMANTIC WEB
DOCUMENTS..30

P. OTHER TOOLS AND SERVICES..31
Q. SUMMARY ..31

III. ENVISIONED SOFTWARE ARCHITECTURE AND INTEGRATION33
A. INTRODUCTION..33
B. STAKEHOLDERS ..33
C. SOFTWARE INTEGRATION TECHNOLOGY OVERVIEW...............35

1. Age of Database Systems...35
2. Age of Network Systems..37
3. Age of Desktop Systems...40
4. Age of Internet..40
5. Code Generators for Integration..41
6. Current State of Integration Technology ..42

D. FUTURE INTEGRATION TECHNOLOGY ...42
E. “SMART” INTEGRATION ...44
F. THE IMPLICATION TO SOA SOLUTIONS..45

1. SOA Design Principles...45
2. Envisioned WSAIF – A Realization of SOA....................................47

G. ENVISIONED WEB SERVICES ARCHITECTURE INTELLIGENT
FRAMEWORK (WSAIF) ...48
1. WSAIF High Level Functional and Architecture Requirements ..48
2. WSAIF Components..50

H. SUMMARY ..53

IV. SAVAGE WEB SERVICES..55
A. INTRODUCTION..55
B. USE CASES..55

1. findX3DModel Web Method Use Case Specification56
2. getX3DModel Web Method Use Case Specification56
3. findDESModel Web Method Use Case Specification56
4. getDESModel Web Method Use Case Specification57

C. DESIGN CONSIDERATIONS...57
D. IMPLEMENTATION PROCESS..58
E. DESIGN COMPONENTS...64
F. DETAILED DESIGN ..65

1. UML Class Diagram..65

 ix

2. UML Sequence Diagram ...68
3. SAVAGE WSDL ..72

G. RESOURCES AUTOGENERATED BY NETBEANS AND JAX-WS76
H. EXTENDING SAVAGE WEB SERVICES ..76
I. SUMMARY ..77

V. IMPLEMENTATION, DEPLOYMENT AND RESULTS....................................79
A. INTRODUCTION..79
B. IMPLEMENTATION SETUP ...79
C. DEPLOYMENT...86
D. TEST CLIENT SET UP ..87
E. TEST RESULTS ..91

a. findX3DModel Webmethod ..91
b. getX3DModel Webmethod ..93
c. findDESModel Webmethod ..94
d. getDESModel Webmethod..95

F. SUMMARY ..97

VI. WSAIF ORCHESTRATION AND ADAPTATION ..99
A. INTRODUCTION..99
B. WS ORCHESTRATION SCENARIO FOR SAVAGE WEB

SERVICES..99
C. SAVAGE WS ORCHESTRATION AND ADAPTATION USING

WSBPEL...100
D. SAVAGE WS ORCHESTRATION AND ADAPTATION USING

OWL-S ..104
E. COMPARISON BETWEEN WSBPEL AND OWL-S.............................107
F. COMPARISON BETWEEN WSMO AND OWL-S107
G. WSAIF SOFTWARE AGENTS+DATA=WEB SERVICES

INTEGRATION ON THE FLY ...109
H. SUMMARY ..110

VII. CONCLUSIONS AND FUTURE WORK...111
A. CONCLUSIONS ..111
B. RECOMMENDATIONS FOR FUTURE WORK....................................111

APPENDIX A. SAVAGE WEB SERVICES SOURCE CODE.......................................113
1. WSMETHODS CLASSES ..113

a. X3DWebService.java...113
b. DESWebService.java...114

2. WSCONTROLLER CLASSES ..116
a. WSStrategy.java ..116
b. X3DFindStrategy.java...117
c. X3DGetStrategy.java...120
d. DESFindStrategy.java ..121
e. DESGetStrategy.java...124
f. WSSingleton.java ..125
g. WSUtility.java..127

 x

3. WSMODEL CLASSES ...128
a. WSCatalogReader.java ...128
b. X3DFindResultEntity.java..130
c. DESFindResultEntity.java ...130
d. Savage Catalog..131

4. GENERATED RESOURCES...131
a. FindX3DModel.java..131
b. FindX3DModelResponse.java ..132
c. GetX3DModel.java..133
d. GetX3DModelResponse.java ..133
e. FindDESModel.java ...134
f. FindDESModelResponse.java..135
g. GetDESModel.java..136
h. GetDESModelResponse.java ..136
i. X3DWebServiceService.wsdl ..137
j. X3DWebServiceService_schema1.xsd..................................138
k. DESWebServiceService.wsdl ..139
l. DESWebServiceService_schema1.xsd140

5. JSP CLIENT...141
a. index.jsp...141
b. SavageWSClientServlet.jsp ...142

APPENDIX B. MEDIATION FOR SAVAGE WEB SERVICES...................................145
1. OWL-S FOR SAVAGE COMPOSITE PROCESS145

a. SavageOWLSSematicWS.owl ...145
b. X3DDESDecision.owl ...150
c. findX3DModel.owl ..153
d. getX3DModel.owl..156
e. findDESModel.owl..158
f. getDESModel.owl..160

2. WSBPEL FOR SAVAGE COMPOSITE PROCESS...............................163
a. compositeProcess.bpel...163
b. DESWebServiceServiceWrapper.wsdl..................................167
c. SavageBpelX3DDESSeqComposite.wsdl167
d. SavageBpelX3DSeq.wsdl ..169
e. SavageGetX3DDESDecision.wsdl..170
f. X3DWebServiceServiceWrapper.wsdl..................................171
g. transformX3DUrlList.xsl ..172

APPENDIX C. RETRIEVE EXAMPLES...173
1. SAVAGE WEB SERVICES SOURCE CODE ...173
2. SAVAGE WEB SERVICES UML DIAGRAMS......................................173
3. JSP CLIENT DEMO URL..173

APPENDIX D. PRESENTATION SLIDESET...175

LIST OF REFERENCES..181

 xi

INITIAL DISTRIBUTION LIST ...185

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF FIGURES

Figure 1. Four classifications of middleware technologies (From Gorton, 2006).9
Figure 2. Web Services Architecture consists of service broker, service requester

and service provider...12
Figure 3. The architecture of AgentWeb Gateway middleware which contains

search query converter, service description converter and communication
protocol converter. (From Shafiq et at, 2006)..15

Figure 4. RDF subject-predicate-object model that make assertions about a resource...16
Figure 5. OWL ontology for OWL-S. The class Service presents ServiceProfile, is

describedby ServiceModel, and supports ServiceGrounding (From Martin
et al., 2004). ...18

Figure 6. Components of ServiceModel in OWL-S..18
Figure 7. Components of Process Model which is part of ServiceModel.......................19
Figure 8. WSMX is a software architecture that enables creation and execution of

semantic web services base on WSMO (From Haller et al., 2005).21
Figure 9. Example of X3D visualization model..25
Figure 10. VISKIT event graph editor is used to create event graphs. VISKIT

autogenerates java source code and XML representation from the event
graphs...26

Figure 11. SMAL documentation on SAVAGE website
(https://savage.nps.edu/Savage/Tools/SMAL/docs/SavageModelingAnalys
isLanguage1.0/Smal1.0.html). ...27

Figure 12. An example of GeoServer display. ..31
Figure 13. Three stakeholders for business knowledge and data (From Hammer and

Timmerman, 2008). ...34
Figure 14. Heterogeneous DBMS enables hierarchical, network and relational

databases to work together (From Hammer and Timmerman, 2008).36
Figure 15. Code generators for database takes in schema for source database, schema

for target relational database and control file. The output is source code
(From Hammer and Timmerman, 2008)..37

Figure 16. ETL architecture diagram. The deployment Engine could be a separate
physical machine or running on the same machine (From Hammer and
Timmerman, 2008). ...38

Figure 17. Standards-based adapters provide access to multiple sources by using
standards-based API (From Hammer and Timmerman, 2008)........................40

Figure 18. There are eight categories of SOA design principles (From Erl, 2008).47
Figure 19. Semantic web service architecture high level functional and architecture

requirements (From Burstein et al., 2005)...50
Figure 20. The envisioned WSAIF and its architecture components................................53
Figure 21. SAVAGE web services use case diagram in UML shows four use cases.

The user uses the client to invoke findX3DModel, getX3DModel,
findDESModel and getDESModel web methods. ..55

 xiv

Figure 22. Reverse engineering leverages available code and generates UML
components. NetBeans and JAX-WS auto-generate WSDL, schema and
Java classes for the web methods...59

Figure 23. Forward engineering using NetBeans provides the capability for NetBeans
to auto-generate classes, attributes and methods (without business logic
implementation) from UML diagrams...60

Figure 24. Forward engineering using NetBeans, with WSDL configured separately
and imported into NetBeans...62

Figure 25. Reverse engineering using NetBeans, with WSDL configured separately
and imported into NetBeans...63

Figure 26. SAVAGE web services component diagram in UML. The components are
the realization of the use cases...64

Figure 27. SAVAGE web services classes implemented in WSController component.
Class diagram in UML...65

Figure 28. SAVAGE web services classes implemented in the WSModel component.
Class diagram in UML...67

Figure 29. SAVAGE web services classes implemented in X3DWSMethod and
DESWSMethod components. Class diagram in UML......................................68

Figure 30. SAVAGE web services sequence diagram in UML for findX3DModel web
method..69

Figure 31. SAVAGE web services sequence diagram in UML for getX3DModel web
method..70

Figure 32. SAVAGE web services sequence diagram in UML for findDESModel web
method..71

Figure 33. SAVAGE web services sequence diagram in UML for getDESModel web
method..72

Figure 34. Test web service using NetBeans. ...73
Figure 35. Web browser displays hyperlink to the X3DWebService WSDL file..............73
Figure 36. WSDL file that describes X3DWebService..74
Figure 37. WSDL file that describes DESWebService..75
Figure 38. View Tomcat application server log in command prompt...............................80
Figure 39. Manage window services panel shows name, description, status, startup

type and log on id of window services...81
Figure 40. Create web service using NetBeans web service wizard.82
Figure 41. NetBeans web service design view is used to add web service operations.83
Figure 42. NetBeans project view gives a good overview of projects, software

components, library, configuration files and source code.83
Figure 43. Undeploy and deploy web services using NetBeans.84
Figure 44. Test web services in NetBeans. ...85
Figure 45. WSDL file that describes X3DWebService...86
Figure 46. SAVAGE web services deployment diagram in UML. Web services are

deployed in SAVAGE Tomcat Web Application Server.87
Figure 47. SAVAGE web services JSP test page. The user selects the web method,

keys in parameters and clicks “Invoke Web Service".88

 xv

Figure 48. JSP test page that contains hyperlink to SAVAGE web service invocation
result...89

Figure 49. Creating web services client in NetBeans..90
Figure 50. Web service client wizard is used to create the web service client that

facilitates connectivity to SAVAGE web services in NetBeans......................90
Figure 51. Web services client established in NetBeans. Web service references

contain web service client objects which can be connected to a web
service. ...91

Figure 52. Source code that invokes findX3DModel web method in Java client main
class..92

Figure 53. Return result for FindX3DModel in XML. ..92
Figure 54. Source code that invokes getX3DModel web method in java client main

class..93
Figure 55. Returned X3D model for getX3DModel web method. The X3D model is in

XML and is displayed by an X3D-compatible viewer.94
Figure 56. Source code that invokes findDESModel web method in java client main

class..95
Figure 57. Return result for findDESModel web method in XML....................................95
Figure 58. Source code that invokes getDESModel web method in java client main

class..96
Figure 59. Return result for getDESModel web method in XML.97
Figure 60. SAVAGE WSBPEL composite process in NetBeans design view. The

composite process includes SAVAGE web services methods.100
Figure 61. WSBPEL mapper view in NetBeans. The mapper creates WSBPEL assign

activity which maps/copies the output parameter/variable of one web
method to the input parameter of another web method.101

Figure 62. WSBPEL NetBeans mapper view with doXSLTransform.
doXSLTransform defines adaptation rules that resolve syntactic or/and
semantic mismatches between two parameters..102

Figure 63. Protégé OWL-S editor can be used to describe semantic web services in
OWL-S...104

Figure 64. Graph overview of SAVAGE OWL-S service profiles, processes and
groundings in Protégé. ...105

Figure 65. SAVAGE OWL-S composite process constructed using the Protégé
OWL-S editor...106

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF TABLES

Table 1. Comparison between WSA styles base on architecture quality properties

(From Wu and Chang, 2005). ..13
Table 2. Conceptual comparison between OWL-S and WSMO (From Lara et al.,

2004). ...109

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

LIST OF ABBREVIATIONS

ACL Agent Communication Language

AI Artificial Intelligence

API Application Programming Interface

ASP Application Service Provider

AT/FP Anti-Terrorism Force Protection

AUV Autonomous Underwater Vehicle

CWM Common Warehouse Metamodel

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

DAML-S DARPA Agent Markup Language for Services

DES Discrete Event Simulation

DF Directory Facilitator

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DOM Document Object Model

EA Enterprise Architecture

EAI Enterprise Application Integration

ECM Enterprise Content Management

EDOC Enterprise Distributed Object Computing

EII Enterprise Information Integration

ESSI European Semantic Systems Initiative

ETL Extract, Transform and Load

 xx

EXI Efficient XML Interchange

FIPA Foundation of Intelligent Physical Agents

GIS Geographic Information System

GML Geography Markup Language

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IE Internet Explorer

IT Information Technology

JAAS Java Authentication and Authorization Service

JAXB Java Architecture for XML Bindings

JAX-WS Java API for XML Web Services

JDK Java Development Kit

JSP Java Servlet Page

MDA Model-Driven Architecture

MOF Meta-Object Facility

MOVES Modeling, Simulation and Virtual Environment

MVC Model-View-Controller

OASIS Organization for the Advancement of Structured Information

Standards

ODBC Open Database Connectivity

OMG Object Management Group

OOP Object Oriented Programming

OWL Web Ontology Language

 xxi

OWL-DL Web Ontology Language-Description Logic

OWL-S Web Ontology Language for Services

PCP Parameter Constraints Pattern

PDDL Planning Domain Definition Language

P2P Peer-to-Peer

QoS Quality of Service

RAHS Risk Assessment and Horizon Scanning

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RIF Rule Interchange Format

SAML Security Assertion Markup Language

SAVAGE Scenario Authoring and Visualization for Advanced Graphical

Environment

SEFAR Service Enabled Fusion Architecture Reusable

SFTP Secure File Transfer Protocol

SMAL SAVAGE Modeling and Analysis Language

SMP Signature Mismatch Pattern

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPEM Software Process Engineering Metamodel

SQL Structured Query Language

SSL Secure Socket Layer

SSO Single Sign-On

SVN Subversion

 xxii

SWSA Semantic Web Services Architecture

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Unique Resource Locator

VRML Virtual Reality Modeling Language

WFS Web Feature Service

WFS-T Web Map Service-Transactional

WMS Web Map Service

WorkSCo Workflow with Separation of Concerns

WSA Web Service Architecture

WSAIF Web Services Architecture Intelligent Framework

WSBPEL Web Services Business Process Execution Language

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMX Web Service Modeling eXecution environment

W3C World-Wide Web Consortium

XACML XML Access Control Markup Language

X-KISS XML Key Information Service Specification

XKMS XML Key Management Specification

X-KRSS XML Key Registration Service Specification

XMI XML Metadata Interchange

 xxiii

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformation

X3D Extensible 3D

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xxv

ACKNOWLEDGMENTS

Special thanks to Associate Professor Don Brutzman for advising and

encouraging me to work on such an interesting research topic. I want to thank my co-

advisor Mr. Curt Blais and second reader Mr. Don McGregor for giving me professional

advice on the subject. Most importantly, I thank my wife Mathitla Tan for her patience

and support.

 xxvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW

Service Oriented Architecture (SOA) is a new trend in software architecture and

integration. SOA is a style of architecture, where existing or new functionalities are

packaged as services. These services communicate with each other by passing data or by

coordinating an activity between one or more services. Such an architecture approach is

an enabler for systems of systems architectures where data, tools and people operate in a

multi-agency, hierarchical and collaborative environment. Web Services Architecture

(WSA) is an example implementation of SOA. With this implementation, business

modules are implemented and deployed as web services using Hypertext Transfer

Protocol (HTTP) invocations enabled via Simple Object Access Protocol (SOAP)

bindings. Web Services Description Language (WSDL) is the World-Wide Web

Consortium (W3C) standard to define Web Services in XML. Applying these techniques,

the new generation of software integration strategies can be more flexible, and integration

solutions can be platform and language independent.

Software integration has been governed by framework standardization to help

ensure interoperability. The role of software frameworks is to mediate and coordinate

multiple functions. The essential operational requirements for software frameworks are

uncompromising reliability, acceptable performance and perhaps some level of design

consideration for maintainability and scalability. In other words, robustness is the key for

what can be defined as a “good” software framework. The same methodology applies to

software frameworks that work with WSA. An example state-of-the-art, web-service

based architecture framework is Service Enabled Fusion Architecture Reusable (SEFAR).

SEFAR is developed by DSO National Laboratories, Singapore. SEFAR enables

orchestration of web services on-the-fly by end users. It also supports sharing of data and

tools in a multi-agency environment. The architecture framework is tested and used in the

Risk Assessment and Horizon Scanning (RAHS) system deployed in 2007 (Foo et al.,

2007). The SEFAR architecture framework as implemented has proven itself to be robust

and flexible.

2

B. PROBLEM DESCRIPTION

Typically, in order for a web service to be integrated with SEFAR,

implementation may vary from two weeks to three months of engineering effort. This

depends on the type of web services and the mediation and translation logic the engineer

needs to “hard code” into the service-associated software agents in the SEFAR

orchestration framework. This engineering step needs to be done in order for different

web services to be composed together. Thus, a key research question is whether the

framework might become so usable and intelligent that integration of web services can be

done on-the-fly as self-integration. Given data, software agents and supporting software

infrastructure, web services integration on the fly means that coding is not required to

integrate web services into a Web Service Architecture.

C. MOTIVATION

WSDL is a XML-based language that provides a model to describle web services.

Information about web services’ operations, bindings and addresses is described in

WSDL.

There are limitations on the amount of information that WSDL can present to

users of web services. As such, using WSDL alone, users do not have clarity on the

parameters’ and result’s format and meaning. There is a need for more expressive

representations of web services; hence, the motivation for more expressive modeling

concepts and implementation such as semantic web services (one example is Web

Ontology Language for Services (OWL-S)) and Web Services Business Process

Execution Language (WSBPEL).

With advanced modeling techniques such as OWL-S and WSBPEL, the

relationship between the services and the relationship between information are made

explicit. This increases the effectiveness of equipping new users with better business and

technical understanding about the web services and how they fit into the overall business

architecture. The benefit to users is that they need less time to understand how each web

service works, and how a group of them might works together.

3

A generic and flexible framework which incorporates the above-mentioned

capabilities will likely reduce the cost of maintaining the software framework in a

heterogeneous network where scalability and adaptability are the key considerations. The

software framework provides some level of automation within a run-time environment.

Hence, this approach will enable web services invocation, mediation and monitoring.

This reduces memory and programmer’s attention required to perform low-level and

mundane tasks. The benefit to users is that they can manage the web services more

efficiently, and are thus able to better focus on strategic business process considerations

and decisions.

Business rules, logic and the constraints of how business components (represented

as web services) work with each other can be made explicit and captured in the

architecture framework. This information becomes the basis for software agents to

perform more intelligent data analysis. This means that technology can become more

effective in searching, filtering, interpreting, categorizing and prioritizing right

information (e.g. matching web services) for users. Likewise, users are able to perform

better as they work with applications facilitated by a more usable and intelligent

architecture.

Most importantly, these complex models and business rules of web services can

be shared within a net-centric environment. This means that users within the network are

well supported by a rich knowledge base.

To the managers, the goals of a usable and intelligent architecture are to increase

users’ productivity, to reduce cost of operation, to minimize cost of maintenance, and to

achieve higher service levels.

D. APPROACH

Using state of the art software engineering practices and SOA-based open

standards (e.g. OWL-S), this thesis explores a generic, flexible, scalable, usable and

intelligent Web Services Architecture Intelligent Framework (WSAIF). These concepts

are applied to the Modeling, Simulation and Virtual Environment (MOVES) domain. The

framework contains software agents that automatically interpret and execute semantic

4

web services and orchestration workflows. WSAIF will enable MOVES visualization and

behavior models such as Extensible 3D (X3D) Graphics and Discrete Event Simulation

(DES) files to be discoverable, sharable, composable and self-integrating using web

services in the SOA environment.

E. THESIS ORGANIZATION

Chapter II addresses background work. Chapter III elaborates on the envisioned

WSAIF. Chapter IV specifies Savage web services which are the fundamental building

blocks of web services architecture for the MOVES domain. Chapter V presents the

implementation and test results for Savage web services. Chapter VI elaborates on the

various modeling techniques to integrate, orchestrate and adapt a composite web services

process. The comparison between the modeling techniques is also discussed. These

modeling techniques will be used in WSAIF Orchestration and Adaptation components.

It further explains how WSAIF software agents and modeling data can enable web

services integration on the fly. The final chapter presents conclusions and

recommendations for future work.

5

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

A good understanding of the many related disciplines affecting this work aids in

better understanding of the problem. Furthermore, this forms the basis for developing

design strategies to realize the envisioned architecture. The section on software

architecture elaborates on the influencing architecture qualities, state-of-the-art design

strategies, intelligent agents and integration technologies. Amidst the different and

incorrect understanding of Service Oriented Architecture (SOA), it is important to re-

establish the fundamental principles of SOA. Web Services Architecture (WSA) and web

services are realizations of SOA. It is also interesting to understand how semantic web

technologies influence SOA design considerations and implementation through semantic

web services. Web Services Business Process Execution Language (WSBPEL) is a

related technology addressing service orchestration. Web Services Choreography and

Web Services Security are important areas related to WSAIF. SAVAGE related

technologies such as Extensible 3D Graphics (X3D), SAVAGE Modeling and Analysis

Language (SMAL) and Discrete Event Simulation (DES) are also discussed. The chapter

ends with description of the tools used in the implementation, testing and deployment

activities, namely NetBeans, Subversion (SVN) and Protégé.

B. SOFTWARE ARCHITECTURE

1. Architecture Qualities

In software requirements analysis, defining architecture qualities specific to the

operational needs for a software application forms part of non-functional requirements. It

is also important to consider tradeoffs while defining architecture qualities. Some of the

widely used architecture qualities are reliability, performance, scalability, security and

maintainability.

a. Reliability

Reliability of a software application is related to its “uptime” or

availability (Gorton, 2006). It is typically measured by mean time between failures, or

6

mean time between recovery of a software application. It is also considered to be the

most critical architecture attribute. This is because software applications are expected to

be available (or not to fail) during operational hours.

b. Performance

A performance quality requirement defines a metric that states the amount

of work an application must perform in a given time (Gorton, 2006). Typically, the

performance of a strategic information software application has to be acceptable. It is also

important to note that poor performance can deter users from using the software

application. In military tactical software applications, performance is a critical

architecture attribute in view of the expected high rate of data update.

c. Scalability

Scalability describes how the design of the software infrastructure adapts

to increases in usage, transactions and deployment requirements. It is often difficult to

validate scalability of a software application because of the large amount of resources

required to establish the test scenarios. Thus it is practical to leverage good engineering

practices from more mature technological areas. Scalability is an important architecture

attribute for software frameworks or middleware deployed to “connect the nodes” in a

multiple-agencies environment.

d. Security

Security design considerations include authentication, authorization,

confidentiality and integrity. A great deal of work has been performed in this area for

Web Services and SOA. Authentication verifies the identity of user. Authorization

defines the resources that the authenticated user has access to. Java Authentication and

Authorization Service (JAAS) is an example technology solution. Transport-layer

encryption (Secure Socket Layer (SSL)) and message-level encryption (XML-

Encryption) is typically the solution to ensure data confidentiality. Data integrity can be

realized via digital signature. Security is a mandatory requirement for deployed software

application. It is also important to note that software application security implementations

usually come with architecture performance tradeoffs.

7

e. Maintainability

Maintainability refers to software application supportability. This measure

includes the testability and modifiability of the software application. To put it simply, it

measures the ease of making software enhancements and testing, troubleshooting and

fixing software issues. Software application maintenance can be preventive (which is

preferred) or reactive. Reactive maintenance is necessary when preventive maintenance

fails to mitigate a certain technical risk of system failure. Reactive maintenance tasks for

mission-critical systems are stressful for Information Technology (IT) engineers. This is

because of the required high service level which means low tolerance (ie. short response

and recovery) for software issues during operations.

2. Design Patterns and Object Oriented Programming

Object Oriented Programming (OOP) is a programming paradigm. It introduces

the concept of classes. Interactions are accomplished by message passing between

instantiated objects. Design Patterns by the “Gang of Four” (Gamma et al., 1995) is a

collection of reusable Object Oriented design templates widely used in software

applications. OOP features such as abstraction and interfaces to software components

can be clearly defined within the abstract classes. The implementation of the interfaces is

handled by the subclasses. These features add flexibility to the object oriented paradigm.

The key quality of design patterns is that they are proven successful “best practices” for

software design.

Patterns are classified into three categories: creational, behavioral and structural.

Creational patterns deal with creation of objects in a system. They are abstract factory,

builder, factory method, prototype and singleton. Behavioral patterns focus on the logic

that the objects within the system are managed. Chain of responsibility, command,

interpreter, iterator, mediator, memento, observer, state, strategy, visitor and template

method are the Behavioral patterns. The popular Model-View-Controller architecture

pattern can also be considered as a type of behavioral pattern. Structural patterns describe

ways to partition and combine entities of a system. It captures the relationships among

entities of a system. Adapter, bridge, composite, decorator, façade, flyweight, half-object

plus protocol and proxy are structural patterns.

8

Although it is a good practice to harness the potential of Design Patterns in

software development, over-applied Design Patterns can result in unnecessary

performance overhead. This is because of the unnecessary run-time overhead; for

example, it takes time to execute a chain of responsibility or visit an entire composite

pattern when there is no requirement (either use case and design) to do so. Although

design patterns serve as a good practice, they do not guarantee quality source code

implementation. In other words, a good developer can produce more efficient and more

effective as compared to a less experienced developer. This happens even if both

developers are implementing the same design pattern. Furthermore, testing is still

required for each use case to verify that the operation is implemented correctly.

3. Model-Driven Architecture (MDA)

MDA is a software design approach used for development of software

applications. It provides definition of models, which are a set of guidelines for the

structuring of specifications. Models provide abstraction of a software application that

allow various stakeholders to reason about the software application from different

viewpoints and abstraction levels (Gordon, 2006). MDA is related to various standards,

which include Unified Modeling Language (UML), Meta-Object Facility (MOF), XML

Metadata Interchange (XMI), Enterprise Distributed Object Computing (EDOC), the

Software Process Engineering Metamodel (SPEM), and the Common Warehouse

Metamodel (CWM). MDA is launched and supported by Object Management Group

(OMG).

4. Unified Modeling Language (UML)

UML is a standardized software modeling language used in the field of software

engineering. The graphical notation comprises structure, behavior and interaction

diagrams. Structure diagrams focus on the elements that are required to be modeled in a

software application. Class, component, package, deployment, object and composite

structure diagrams are structure diagrams. Behavior diagrams model what happens to the

elements within the software application. Activity, state machine and use-case diagrams

are behavior diagrams. Interaction diagrams emphasize on the modeling of the flow of

9

control between the elements in the software application. Interaction diagrams include

communication, interaction overview, sequence and timing diagrams.

UML activity diagrams can be used to model web services composition (Skogan

et al., Web Service Composition in UML, 2004). Extensible Stylesheet Language

Transformation (XSLT) is used to transform the UML activity model to a web service

composition language such as WSBPEL and Workflow with Separation of Concerns

(WorkSCo).

5. Middleware and Interoperability

Middleware refers to a commonly used piece of software that connects two or

more software applications so that data can be exchanged between them. It also refers to

the software layer that sits between the operating system and the software application it

connects to. As such, middleware is typically pertinent to developers and transparent to

the user.

Figure 1. Four classifications of middleware technologies (From Gorton, 2006).

Middleware can be classified into transport, application servers, message brokers

and business process orchestrators (Gorton, 2006). The transport layer refers to pipes

used for sending requests and for moving data between software components. Examples

are distributed object systems and message-oriented middleware. Application servers sit

on top of the transport layer and have additional capabilities such as transaction, security

and directory services. Some of the examples are BEA Weblogic, JBOSS, Tomcat, IBM

Websphere and .NET. Message brokers are software that translates from sender’s formal

10

message protocol to a receiver’s formal message protocol on a network. It leverages the

basic capabilities of transport layer and/or application servers. Some examples of

message brokers are SonicMQ and WebSphere Message Broker. Business process

orchestrators have added capabilities for workflow orchestration for business processes.

Some of the examples are BizTalk and ActiveBPEL. However, current implementation of

middleware seeks to achieve interoperability given a commonly defined protocol or open

standard. Perhaps middleware technology has a greater potential, if systems of systems

integration might be accomplished by synergizing and adapting multiple open standards.

6. Software Agents

Software agents are basically software with situated logic that acts on behalf of

human users. They exhibit characteristics like responsiveness, pro-activeness and the

ability to cooperate with other software agents to achieve multiple objectives. From an

architecture perspective, the definition is not sufficiently clear to distinguish between the

various application systems (Gorton, 2006). On the other hand, the definition is a good

design consideration for categorizing and implementing agent-based functionality and

behaviors within an architecture component. In other words, it can be considered as a

very specific type of controller in a typical Model-View-Controller (MVC) architecture

model.

Rao and Su, includes a survey of automated web service composition methods.

The paper mentions that related areas of research basically fall into two realms: namely

workflow composition and AI planning. The paper focuses on AI planning, showing that

AI planning methods for workflow composition are classified into five categories. They

are situation calculus, Planning Domain Definition Language (PDDL), rule-based

planning, theorem proving and others. The paper also proposed a general framework for

automatic web services composition. The process of automatic service composition

consists of five phases, including presentation of single service (ie. advertising atomic

services), translation of the languages from external languages (used by service users) to

internal languages (used by system), generation of composition process model, evaluation

of identified composite services for prioritization, and execution of selected composite

service.

11

C. SERVICE ORIENTED ARCHITECTURE (SOA)

SOA is a style of architecture. Business components are cleanly partitioned and

consistently represented as services. The services communicate with each other either by

passing data among the services or by coordinating activities among the services. This

also establishes a common model for automation logic and business logic. The model

applies equally to a task, solution, an enterprise, a community and beyond (Erl, 2005).

SOA affords agencies the ability to take advantage of new technologies more easily and

respond to end-user demands more quickly and cost-effectively (Matthews, 2008).

The ideal SOA has resources that are decoupled and consistently represented.

Resources in an IT architecture context can be data, automation logic, business logic, a

task, a solution, an enterprise, a community, and beyond (Erl, 2004). Thus, by adhering to

this methodology, coupled with the understanding of fundamental SOA concepts,

principles and methodology, open standards such as Web Service Architecture (WSA)

and web services offer realizations of the SOA vision. However, according to Thomas

Erl, the rise of false SOA has distorted this vision. Many believe that a technical

architecture that is service-oriented is simply one that comprises web services. The

assumption that the benefits of SOA are attainable solely by investing in web services

platform is incorrect. Such perception of a “true path of service-orientation” might further

reinforce SOA anti-patterns (bad practices) by further entrenching traditional distributed

computing models or, worse, some propriety software solution. Hence, the best way

forward is for organizations to have a good understanding and to focus on an ideal IT

infrastructure that is transformed by SOA as a style of architecture and work

progressively towards aligning systems with the targeted model.

SOA-based applications tend to perform well for strategic applications. Typically,

strategic systems sit in a protected environment. With a network infrastructure that

includes reliable high capacity bandwidth. On the other hand, there are identified issues

when SOA is applied to tactical applications for military use. Establishing and

maintaining connectivity between applications and services in a diverse distributed

tactical environment can be highly difficult. Furthermore, bandwidth in a wireless tactical

environment is limited. Hence, to address these issues, there is a need to rethink data-

12

exchange strategies. Some of the approaches include resolving “small pipe syndrome”

through. XML compression, reducing web services calls, batch processing, etc. and also

overcoming intermittent connectivity through the use of event driven architecture with

robust messaging framework, asynchronous messaging and leverage rich/”smart” client

so that functionalities can be retained even if the connection drops (Matthews, 2008).

D. WEB SERVICES ARCHITECTURE (WSA)

WSA is an example variation or realization of SOA using particular standards, as

shown in Figure 2.

Figure 2. Web Services Architecture consists of service broker, service requester
and service provider.

The key components are service provider, service requester and service broker.

The service provider refers to the organization deploying the web services. Web Service

Description Language (WSDL) descriptions of the web services are registered with the

service broker. The service broker is typically realized by open standards such as

Universal Description, Discovery and Integration (UDDI). UDDI is a platform-

independent, XML-based registry for advertising available web services. The service

requester looks up the service broker for information about the web service such as its

addresses and endpoints, and then makes http/https invocation of the web service. The

protocol which enables such consistent XML-based message bindings is called Simple

Object Access Protocol (SOAP).

13

Wu and Chang have done a comparison between nine WSA styles (Wu and

Chang, 2005). They can be broadly categorized into broker-based architecture and peer-

to-peer (P2P) architecture. Broker-based architecture includes matchmaker broker,

layered matchmaker broker, facilitator broker and layered facilitator broker. P2P

architecture includes P2P discovery, matchmaker with P2P discovery, split code with

P2P execution and mobile code with P2P execution. Architecture quality properties used

for comparison are loose coupling, interoperability, scalability, simplicity, extensibility,

performance, security, reliability, visibility and composability. Table 1 povides a

summary evaluation of the two styles according to these quality properties.

Table 1. Comparison between WSA styles base on architecture quality properties
(From Wu and Chang, 2005).

The score is an integer that ranges between -2 to 2 inclusive. The value of this

number refers to the degree of which an architecture style exhibits the architecture quality

property. Each quality property is assigned a weight from 1 to 5, showing the significance

of each architecture quality property with respect to WSA in general.

14

E. WEB SERVICES

The World Wide Web Consortium (W3C) defines web services as “a software

system designed to support interoperable machine to machine interaction over a

network.” Basically, web services expose a web application programming interface (API)

over the network. WSDL is a XML-based language which provides a model to describe

web services. Information about web services’ operations, bindings and addresses is

described in WSDL.

It is common to implement business modules, such as data or tools as web

services, using a WSA. Web services in this case are the front-end interface or the

wrapper to the various business modules. Web services can also be implemented as

adapters (data transformers) between two services which do not precisely agree on the

syntactic and semantic of application constructs (Harikumar et al., 2005). In this paper,

an event driven architecture is explored and components of the architecture include event

listener, repository, messaging, pre/post processor, web services (as adapter) and XSLT

engine. The XSLT engine is the implemented data transformation logic for the web

services.

F. SEMANTIC WEB SERVICES ARCHITECTURE (SWSA)

The Semantic Web Services Architecture (SWSA) committee has identified the

scope and potential requirements for a semantic web services architecture (Burstein et al.,

2005). The committee has also created a set of architectural and protocol abstractions

based on the functional and architectural requirements defined. According to SWSA,

phases of semantic web service interaction include candidate service discovery, service

engagement (specifically service negotiation and contracts), service process enactment

and management, community support services, and quality of service.

G. SWSA AND SOFTWARE AGENTS INTEROPERABILITY

It is interesting to consider the interoperability between software agents and

semantic web services. The idea is to introduce middleware “AgentWeb Gateway” to

make multi-agent systems standards compatible with existing web services standards

without changing their existing specification and implementation (Shafiq et al., 2006).

15

Solutions that are implemented in AgentWeb Gateway include a service discovery

converter which ensures interoperability between Directory Facilitator (DF) and UDDI.

A service description converter ensures interoperability between WSDL and DF-Agent A

description and communication protocol converter ensures interoperability between

Agent Communication Language (ACL) and SOAP. Foundation of Intelligent Physical

Agents (FIPA) is an IEEE standards committee and the major specification governing

body of Software Agents and Multi Agent Systems. Figure 3 shows the architecture of

AgentWeb Gateway middleware that enables compatibility between multi-agent systems

standards and existing web services standards.

Figure 3. The architecture of AgentWeb Gateway middleware which contains
search query converter, service description converter and communication protocol

converter. (From Shafiq et al, 2006).

H. SEMANTIC WEB TECHNOLOGIES

1. Resource Description Framework (RDF) and RDF Schema (RDFS)

Resource Description Framework (RDF) is a language construct for making

assertions about a resource in the form of subject-predicate-object expressions. This

model is also called triples. A resource is identified by a unique Uniform Resource

Identifier (URI).

16

Figure 4. RDF subject-predicate-object model that make assertions about a resource.

Resource Description Framework Schema (RDFS) is an extension of RDF which

provides the additional capability of defining classes and class properties. RDFS enables

the creation of a vocabulary and has the ability to define class, sub-class, property domain

and property range.

RDF and RDFS are both W3C recommended specifications and are the building

blocks for defining the Semantic Web (Klyne et al. 2004) (Brickley et al., 2004).

2. Web Ontology Language (OWL)

Web Ontology Language (OWL) is an XML based vocabulary that extends RDFS

to provide a more comprehensive ontology representation, such as cardinality constraints,

quantifiers, etc. Reasoning engines have been developed to check for semantic

consistency and help to improve ontology classification. OWL is also a W3C

recommended specification. There are three dialects of OWL; namely, OWL-Lite, OWL-

DL and OWL-Full. Each dialect has a different level of expressiveness and reasoning

capabilities.

a. OWL-Full

OWL-Full is the complete language and was designed to preserve some

compatibility with RDFS. Thus, it has no restriction on RDF types used and has the

advantage of being useful for modeling a full representation of a domain. However, the

trade off is the high complexity of the model. This can result in sophisticated

computation that may not complete in finite time.

17

b. OWL-Description Logic (OWL-DL)

OWL-DL is less expressive than OWL-Full but more expressive than

OWL-Lite. OWL-DL has restrictions on the use of some of the description tags. Thus

computation formed by a reasoning engine on OWL-DL ontologies can be completed in a

finite amount of time (Lacy, 2005). It is also the most commonly used dialect for

representing a domain ontology for semantic web applications.

c. OWL-Lite

OWL-Lite is the least expressive compared to OWL-Full and OWL-DL,

and is suitable for building ontologies that only require classification hierarchy and

simple constraints. In view of its simplicity in expressiveness and constraints capabilities,

OWL-Lite provides the most computationally efficient reasoning.

3. Rule Interchange Format (RIF)

The primary goal of Rule Interchange Format (RIF) is to be an effective means of

exchanging rules that have the potential to be widely adopted in industry in a way that is

consistent with existing W3C technologies and specifications (Paschke and Hirtle, 2008).

RIF uses XML as the normative concrete, human-readable syntax.

I. SEMANTIC WEB SERVICES

1. Web Ontology Language for Services (OWL-S)

Web Ontology Language for Services (OWL-S) is an OWL ontology for web

services and was originally known as DARPA Agent Markup Language for Services

(DAML-S) (Martin et al., 2004). The purpose of this language is to address the

limitations of WSDL and UDDI. It is also used to describe rich and flexible metadata

required for web services automation such as web services discovery and orchestration.

The principal components of an OWL-S description of a service are shown in Figure 5.

18

Figure 5. OWL ontology for OWL-S. The class Service presents ServiceProfile, is
describedby ServiceModel, and supports ServiceGrounding (From Martin et al.,

2004).

ServiceProfile describes “what the service does.” Properties used to provide a

complete description of serviceProfile include serviceName, intendedPurpose,

textDescription, role, provideBy and requestBy. Functional attributes of serviceProfile

include geographicRadius, degreeofQuality, serviceParameter, communicationThru,

serviceType, serviceCategory, qualityGuarantees and qualityRating.

ServiceGrounding describes “how to access the service” which includes protocol,

message format, serialization, transport and addressing.

Figure 6. Components of ServiceModel in OWL-S.

19

Figure 7. Components of Process Model which is part of ServiceModel.

ServiceModel (Figure 6) describes the process to access a service. The subclass of

serviceModel is ProcessModel (Figure 7). ProcessModel has subclasses Process ontology

and ProcessControl ontology. There are three types of Process, namely atomic (directly

invocable), simple (single-step, but not directly invocable) and composite (made up of

other processes). The ProcessControl ontology provides constructs that describe temporal

or state dependencies, mapping rules for input state properties to corresponding output

state properties, and defining representations for messages about the execution process

state. The constructs for ProcessControl ontology are sequence, split, split+join,

concurrent, unordered, choice, if-then-else, repeat-until and repeat-while. The

ProcessControl ontology is still under development. OWL-S ProcessControl ontology has

the potential to be equivalent or better than the service orchestration layer design

provided by the Web Service Business Processing Language (WSBPEL). The purpose for

OWL-S is to provide sufficiently rich metadata so that software agents are able to read in

the data and to automate web service discovery, invocation, workflow orchestration,

interoperation and workflow monitoring.

2. Web Service Modeling Ontology (WSMO)

WSMO is a formal ontology used to describe various aspects of semantic web

services. The ontology is comprehensive such that it can be exploited by software agents

to automate service discovery, composition, execution and interoperation. The WSMO

working group is part of the European Semantic Systems Initiative (ESSI) cluster (Bruijin

et al., 2005).

20

There are 4 modeling elements to WSMO: ontologies, web services, goals and

mediators. WSMO ontologies consist of non-functional properties, mediators, concept

definitions, relation definitions, axioms, and instances (Lara et al., 2004). The purpose of

WSMO ontologies is to define the information’s formal semantics and allow applications

to link machine and human terminologies (Haller et al., 2005).

WSMO goals are basically high-level descriptions of objectives that a service

consumer has when he needs to consult web services.

WSMO mediators are one of the most important elements. A mediator’s role is to

address heterogeneity problems. This refers to syntactic and semantic mismatches

between linked elements. Thus, the mediator allows a description of mappings,

transformation and reductions between linked elements. There are 4 different types of

mediators, namely ggMediator (goal to goal), ooMediator (ontology to ontology),

wgMediator (web service to goal) and wwMediator (web service to web service).

WSMO web services provides comprehensive and loose coupling of web services

modeling elements. WSMO defines non-functional properties such as performance,

quality of service, reliability, security or trust. Definition of WSMO web services also

includes the use of WSMO Mediators. Functional capabilities include pre conditions,

assumptions, post conditions and effects. WSMO web services also describe details about

operation of services, such as error information and compensating services in the event

that an error occurs. It defines an orchestration proxy for static and dynamic composition.

Message exchange patterns in WSMO web services describe temporal and causal

relationships. Finally, WSMO allows description of several groundings for the same web

service.

Web Service Modeling Language (WSML) is the formalized modeling language

for WSMO. It also provides a rule-based language for the Semantic Web. The WSMO

working group includes the WSML working group.

Web Service Modeling eXecution environment (WSMX) is a software

architecture that enables creation and execution of semantic web services based on

WSMO (Haller et al., 2005). The architecture has the following components (see Figure

8): compiler, matchmaker, data mediator, adaptor, choreography engine, composition and

21

communication manager. The compiler component is responsible for checking the

syntactical validity of WSML documents. This component is also used to store parsed

information persistently. The matchmaker is used to find suitable services to achieve a

goal. The data mediator is the implementation of the ooMediator from the WSMO

specification. The adaptor resolves semantic mismatch problems before interoperability

between composed services becomes an issue. The choreography engine supports the

composition of web services. Choreography of a web service defines the communication

pattern which another service/requester has to abide before interacting with the web

service. The composition component is used for executing composite/complex

composition of web services in order to achieve a goal. The communication manager has

two tasks. The component has to handle invocations from requesters. Secondly, it is able

to invoke web services, receive and communicate the results back to WSMX. The

communication manager is able to handle both synchronous and asynchronous web

services calls.

Figure 8. WSMX is a software architecture that enables creation and execution of
semantic web services base on WSMO (From Haller et al., 2005).

22

J. WEB SERVICES BUSINESS PROCESS EXECUTION LANGUAGE
(WSBPEL)

WSBPEL focuses on the design of a service orchestration layer by creating

business process definitions. It is basically a language to describe business process

behavior based on web services. It is formally called BPEL4WS. The release of

BPEL4WS 1.0 specification was a joint effort by IBM, Microsoft and BEA. Later, SAP

and Siebel Systems joined in for the release of BPEL4WS 1.1. It is currently an

Organization for the Advancement of Structured Information Standards (OASIS) open

standard. In order to enable capabilities such as automatic web service discovery,

orchestration and invocation, WSBPEL works with other open standards such as UDDI

and WSDL.

It is important to address the mismatch issue between two services in an

orchestrated workflow. Focusing on business level interfaces and protocol, adaptation for

replace ability can be achieved (Benatallah et al., 2005). The idea is to make one service

compliant to another. Different types of mismatch patterns are identified. At the

operational level, there are Signature Mismatch Pattern (SMP) occurs when an operation

has the same functionality but differs in operation name, or the number, order or type of

input/output parameters. WSBPEL’s receive, assign and reply activities are required to

resolve such operation-level mismatches. Another operational level mismatch is

Parameter Constraints Pattern (PCP) which means differences in value ranges between

two operations. WSBPEL’s switch, invoke and reply activities are required to resolve this

mismatch. A protocol level mismatch refers to extra message, missing message and

message split type of mismatches. WSBPEL activities are sufficient to resolve such

mismatches.

K. WEB SERVICES CHOREOGRAPHY DESCRIPTION LANGUAGE (WS-
CDL)

Web services choreography refers to the sequence of messages between different

services to accomplish a flexible composition of services, particularly in an inter-

organizational business process. Choreography can be global or local. The global model

of choreography specifies the message exchanges from an overall point of view and the

23

local model defines the message interactions from the perspective of one party (Mendling

and Hafner, 2004). WS-CDL is an XML-based language that describes peer-to-peer

collaboration protocols based on web services. The common and complementary

observable behavior to achieve a common business goal is defined from the global

viewpoint. The behavior here refers to the order of message exchanges.

There is a distinction between choreography and orchestration. Orchestration is

defined by one party and refers to the execution part of the inter-organizational business

process. There are multiple parties involved in choreography.

L. WEB SERVICES SECURITY (WS-SECURITY)

Web services identification, authentication and authorization are enabled by the

WS-Security standards. Security tokens assert claims and can be used to assert the

binding between authentication keys and security identities. An authority can vouch for

or endorse the claims in a security token by using its key to sign or encrypt (it is

recommended to use a keyed encryption) the security token thereby enabling the

authentication of the claims in the token. Thus, authentication proves the identity and

authorization states the extent to which the authentication applies. Specifications that

enable these mechanisms include SOAP Message Security published by OASIS. In WS-

Security, Security Assertion Markup Language (SAML), .NET Passport and XML

Access Control Markup Language (XACML) are the three primary extensions that

support the implementation of single sign-on (SSO).

For message confidentiality, transport level encryption (which can be handled by

the conventional secure socket layer (SSL)) and message-level encryption (specified in

XML-Encryption standards recommended by W3C) need to be considered. XML

encryption can be applied to parts of a SOAP header and/or SOAP message body. Block-

encryption algorithms that can be used in the framework include AES, 3DES and RSA.

SOAP message integrity can be ensured via XML-Signature, which is a W3C

recommended standard. The specification allows arbitrary cryptographic signature and

message authentication algorithms, symmetric and asymmetric authentication schemes,

and key agreement methods.

24

For web services security policies, the WS-Policy framework provides the means

to attach properties such as rules, behaviors, requirements and preferences to web

services. Such individual properties are represented by policy assertions. Assertions are

communicated non-negotiable and preferred policies. WS-Policy can be incorporated

within majority WS-* extensions. WS-Policies incorporate assertions with respect to WS-

Security, WS-Trust and WS-SecureConversation. The result is the governing standards

for web services WS-SecurityPolicy.

For key management for SOAP messages (messages in XML format), the XML

Key Management specification (XKMS) is the governing standard. The purpose of

XKMS is to specify protocols for distributing and registering public keys. XKMS 2.0

comprises of 2 parts: namely XML Key Information Service Specification (X-KISS) and

XML Key Registration Service Specification (X-KRSS).

XML document-centric security is an interesting approach to XML security,

which is essential to WS security. The enabler is a security architecture that is expected to

provide confidentiality, integrity, and authentication commensurate with the nature of the

generated document, maintaining the information objects at an appropriate level of

security and acceptable level of risk, as discussed in (Williams, 2008). That thesis aims to

investigate the possibility of standardizing XML-based secure document and message

dissemination among multinational coalition partners or a multi-agency Homeland

Defence task force.

M. VISUALIZATION AND BEHAVIOR MODELING

1. Extensible 3D (X3D) Graphics

Extensible 3D (X3D) Graphics is the ISO Standard for representing 3D computer

graphics (see Figure 9). It is a royalty-free open-standard file format and run-time

specification. It also has the capability to encode scene graphs in XML. X3D is the

successor to the Virtual Reality Modeling Language (VRML) and encompasses

extensions to VRML such as Humanoid Animation, GeoVRML, etc. Other features of

X3D include its ability to integrate with web services and distributed networks. The

standard is componentized, extensible, embedded application ready, real-time and well

25

specified (Web3D, 2008). In order words, 3D graphics on web is made portable using

X3D. X3D is the selected visualization technology used in Autonomous Underwater

Vehicle (AUV) Workbench and Anti-Terrorism Force Protection (AT/FP) projects with

Naval Postgraduate School. There are various editors for X3D, including X3D-Edit

which is adapted from earlier designs by the Naval Postgraduate School. The tool has

advanced features such as collaboration and version control support which better equip

developers in a team-based development environment (Brutzman and Daly, 2007).

Figure 9. Example of X3D visualization model.

2. Discrete Event Simulation (DES)

Discrete event simulation (DES) is triggered via scheduled events which can have

arbitrary durations between them. When handling each event, necessary calculations are

made, entity states are updated and new events are added into the schedule. The

simulation time is advanced directly to the next event on the event queue. Hence, DES

has the advantage of streamlining computation as compared to time-step based

simulation. Time-step based simulation incurs overhead at each time step even if there is

no new simulation event to perform. DES generally results in better performance from an

architectural perspective for many classes of problems.

Event graphs are used to design DES models (Schruben, 1983). To facilitate

development of DES models, the Naval Postgraduate School developed SIMKIT and

VISKIT. SIMKIT is a Java API for creating DES models. VISKIT (Figure 10) is a visual

26

development environment for SIMKIT and has java code generation capabilities. DES

models created using VISKIT are also represented in XML. With these capabilities,

VISKIT adds value by increasing the productivity of developers who create and integrate

DES models.

Figure 10. VISKIT event graph editor is used to create event graphs. VISKIT
autogenerates java source code and XML representation from the event graphs.

3. SAVAGE Modeling and Analysis Language (SMAL)

The SAVAGE Modeling Analysis Language (SMAL) is a XML based language

providing comprehensive constructs for describing tactical, physical and simulation

oriented metadata for vehicles, terrain and other entities in a virtual environment (Rauch,

2006). An excerpt from the SMAL online documentation is shown in Figure 11.

SMAL is used in Viskit, the SavageStudio scenario-authoring tool, the Scenario

Authoring and Visualization for Advanced Graphical Environment (SAVAGE) model

archives and the Savage Defense X3D model archives. The SMAL construct (specifically

SimulationAgent element) in a Savage X3D model archive is the basis for matching DES

behavior to X3D visualization.

27

Figure 11. SMAL documentation on SAVAGE website
(https://savage.nps.edu/Savage/Tools/SMAL/docs/SavageModelingAnalysisLang

uage1.0/Smal1.0.html).

4. Defense Model Archives

The model library is an open-source set of 3D models used for defense

simulation. Bugs are tracked online. The resources are available at

https://savage.nps.edu/Savage. The Defense model archives is a similar set of models

used defense simulation. However, the access is only limited to U.S. citizens and

government contractors only. Catalog builder software reviews the two-tier SAVAGE

model file directories and files to read in camel-case directory, file names, embedded

document meta values and SMAL metadata nodes to create a content catalog in XML.

The catalog builder is written in Java. An XSLT stylesheet then reads the SAVAGE

content catalog and creates the various HTML pages associated with the models. A

build.xml project file invokes XSLT stylesheets and facilitates in the creation of zip

archives, uploading files and other deployment tasks. Subversion (SVN) is the tool used

for the version control of source code and models. The archive infrastructure is

extensible, with X3D-Edit and Netbeans both supporting model contribution by authors.

28

N. NETBEANS 6.1 AND VERSION CONTROL

1. NetBeans Integrated Development Environment (IDE)

With support for UML features, NetBeans is an integrated development

environment for software application analysis, design and implementation. One can

easily construct UML diagrams by selecting the design UML components required from

the component palette and then dragging and dropping the components into the diagram

editor. UML diagrams supported by NetBeans are use case, state, sequence, class,

deployment, component, collaboration and activity diagrams, which provides good

coverage for most software engineering needs.

The “apply design patterns” feature invokes a wizard to facilitate an intuitive step-

by-step approach that incorporates UML design pattern templates into the software

application design. Basic understanding of UML and design patterns is still necessary for

effective use of the tools when building a quality software design. This is because it is the

use case and its realization that determine the suitable design pattern to meet the original

design requirement. “Over applying” a design pattern when there is no design

requirement to support the design decision may result in problems such as reduced

performance. The UML diagrams are useful for documentation purpose. Besides that,

NetBeans UML diagrams are also the basis for forward engineering in NetBeans.

2. Forward and Reverse Engineering

NetBeans forward engineering refers to auto generation of source code from

UML diagrams within NetBeans. The source code for packages and class diagrams

(coupled with well-defined operations) can then be autogenerated. The source code for

sequence of class method calls between class instances that are captured in UML

sequence diagrams cannot be autogenerated. In other words, NetBeans only generates

classes, their attributes and methods (without detailed implementation). Developers have

to implement the details of each class method.

NetBeans reverse engineering refers to the autogeneration of design models by

NetBeans from source code. This feature is especially useful for existing software

applications that require design documentation updates. Source code can be imported into

29

NetBeans and then the basic design entities and models can be autogenerated from the

source code. Each basic design entity represents packages or classes (with details on

attributes and methods). These basic design models are the basic building blocks for

developers to create various UML diagrams. NetBeans reverse engineering is also useful

for easy synchronization of design models, given updated source code.

3. Implementation using NetBeans

Implementation is made easy in NetBeans with the use of the project creation

wizard. The type of project supported by NetBeans includes java, web, enterprise,

mobility, UML, SOA, ruby, C/C++, NetBeans modules and solution templates. The

project creation wizard increases the productivity of the developer by providing basic

software infrastructure for specific types of software applications. Hence, the developer

only needs to focus on the higher level business logic implementation. NetBeans has

intuitive icons to reflect the types of NetBeans components or entities created. The

customizable multi-panels and dashboards also make development more efficient because

they reduce memory load for developers to keep track of important information from

different panels. The refactor feature in NetBeans is powerful and helps developers to

make consistent changes across the application by consistently updating all dependent

modules that require changes.

In application development, developers often work in a team. Although NetBeans

supports version control tools such as CVS or SVN that helps to control source code

changes contributed by different developers, collaboration usually includes more

comprehensive requirements. Conventional collaboration tools such as groove or MSN

typically include features such as file sharing, chatting, co-editing design documents,

notification, forum discussion, etc. Such collaboration features can be incorporated into

NetBeans. These emerging features will further enhance the capability of the application.

4. Subversion (SVN) for Version Control in NetBeans

SVN is a version control tool released by CollabNet Inc. in 2000. It is used for

managing current and historical versions of source code and documents. It is released

under the Apache License and is used by many open source projects. Integration of SVN

30

as part of the NetBeans integrated development platform can eases the process of

updating source code into common code repository. It also helps to synchronize and

ensure that every developer in the development team adds or amends the right versions of

source code. SVN features include commits (from client to code repository), branching

(for parallel development), tagging (to synchronize release versions across software

applications), check out (from code repository to client), diff (to check for differences in

code between versions), etc. One of the reasons why SVN is preferred over CVS is

because the SVN executes atomic commits of source code. Either the whole transaction is

committed or none of it is committed. This mitigates the risk of partial commitment of

source code when there is some system or infrastructure issue (for example, the network

goes down during the source code commit process). Other advantages of SVN include

versioning of directories, renaming, better performance, etc.

O. PROTÉGÉ AUTHORING TOOL FOR SEMANTIC WEB DOCUMENTS

Protégé is developed by Stanford University. It is a free, open source tool that

provides end users with the means to create, visualize and update ontologies. The Protégé

OWL editor enables users to build ontologies based on OWL. Protégé is extensible and

has plug-ins architecture. Using Protégé Java APIs, developers can add and integrate

application plug-ins into the Protégé platform to extend platform capabilities. One such

plug-in is the OWL-S plug in developed by SRI International. SRI International is an

independent, nonprofit research institute that conducts contract research for government

agencies and businesses. The OWL-S plug-in provides a usable means for user to

construct OWL-S for semantic web services. It has WSDL import feature that

automatically establishes service profile, grounding and atomic processes. User can then

add or edit OWL-S description. There are even graphical representation for OWL-S

features such as services ontology establishment (profile, grounding, etc.) and composite

processes. The XML for OWL-S is made transparent to Protégé users and is dynamically

generated by Protégé as the user creates or updates using the OWL-S plug-in.

31

P. OTHER TOOLS AND SERVICES

GeoServer (Figure 12) is an open-source server that connects information to the

geospatial web (http://geoserver.org/display/GEOS/Welcome). It is a type of Geographic

Information System (GIS). Using GeoServer, one can publish, subscribe and edit

information using open source standards. One has full control over the look of the map.

Web Map Service (WMS) displays geographic data as raster images. Web Feature

Service (WFS) communicates real geographic data to and from the user in the form of

Geography Markup Language (GML). Web Map Service-Transactional (WFS-T) allows

users to edit geographic data in transaction blocks. GeoServer supports WFS-T and WMS

open protocols from OGC to produce JPEG, PNG, SVG, KML/KMZ, GML, PDF,

Shapfiles, etc. GeoServer supports display of maps on web pages, UDig, GVSig, Google

Earth and others. Each has the UI interactive capability such as zooming and panning.

Figure 12. An example of GeoServer display.

Q. SUMMARY

The chapter has discussed the related background work. Software architecture

considerations were discussed. WSA and web services are one realization of SOA.

32

Semantic web services leverage semantic web technologies and the technology further

enhances the realization of SOA. Related technologies such as WSBPEL, WS-CDL and

WS-Security are essential enablers for the WSAIF. SAVAGE-related tools and resources

were discussed because they provide a domain for application of the WSAIF. The chapter

concluded with descriptions of tools used in the implementation, testing and deployment

of SAVAGE web services, WSBPEL and OWL-S models for purposes of this thesis.

33

III. ENVISIONED SOFTWARE ARCHITECTURE AND
INTEGRATION

A. INTRODUCTION

This chapter discusses the three stakeholders of data, namely data owner, business

process owner and software developer. The overview of software integration technology

is elaborated. The speculated future software integration technology is mentioned. This is

followed by the introduction to the concept of “smart” integration. The SOA design

principles are discussed. The high level functional and architectural requirements for the

envisioned WSAIF are elaborated. The WSAIF components realize the high level

functional and architectural requirements.

B. STAKEHOLDERS

Data is the most important consideration when Information Technology (IT)

initiatives such as hardware migration, software upgrade and revamp are applied to

legacy software applications. These software applications contain critical data which are

essential for core business functions and day-to-day operations. Hence, legacy software

applications cannot be decommissioned or retired easily because critical data are tightly

coupled with legacy software applications. Data formats can be designed specifically to

support interoperability with legacy software applications. In order for legacy software

applications to integrate with other software applications, it is necessary to migrate

critical data to another format. Typically, an open format is adopted by all applications.

However, the technical cost and operational risks for such an approach are high. Research

performed by the Standish Group (2003) reports that 50-80% of a corporation’s IT

budget is spent on maintenance. Hence, it is important to understand the evolution of

software and the fundamentals of software integration (Hammer and Timmerman, 2008).

In other words, a good understanding of the benefits, limitations, differences and related

problems between different generations of software integration technologies can

influence the design of a more efficient and maintainable future software integration

framework.

34

Three stakeholders need to be considered (Figure 13): the data owner, business

process owner and software developer (Hammer and Timmerman, 2008). The data owner

is a person, commonly referred to as database administrator, who has full access to the

data and knows what each data value refers to. The data owner maintains the data

dictionary. The software developer is responsible for developing software applications

and maintaining them in production. The tasks for a software developers can be

outsourced to contractors. Thus, the software developer is often given limited access to

the data. Business process owners are typically a manager or executives who understand

the business value of the data, and knows how to interrelate the data to support business

requirements.

Figure 13. Three stakeholders for business knowledge and data (From Hammer and
Timmerman, 2008).

35

C. SOFTWARE INTEGRATION TECHNOLOGY OVERVIEW

The following information on software-integration trends (database system,

network system, desktop system, internet and code generators) is summarized and taken

from Fundamentals of Software Integration (Hammer and Timmerman, 2008).

1. Age of Database Systems

Data integration is one of the key strategies for software application integration.

The motivation is to ensure interoperability to a common data format so that different

software applications can access the information. During the 1980s and 1990s, when

relational database technology became commercially viable, research initiatives explored

the possibility of integrating different types of database using relational database systems.

There were two approaches to such a task. One approach was to design a hybrid or

heterogeneous database management system (which is itself a relational database) that

enabled hierarchical, network and relational databases to work together (Figure 14). The

second approach was to develop productivity tools to automate migration of hierarchical

and network-based databases into a single relational database. The latter approach was

more successful. This was because the formal approach has issues such as complexity in

configuration, compromised integrity of heterogeneous database transactions and high

cost in maintenance.

36

Figure 14. Heterogeneous DBMS enables hierarchical, network and relational
databases to work together (From Hammer and Timmerman, 2008).

Code generators for databases were another software capability sometimes used

for data integration. In this approach, hierarchical and network-based databases were

migrated to a relational database using COBOL report writers. Code generators for

databases take three types of input (Figure 15); schema for source database, schema for

target relational database, and a control file which would indicate rules for correlating

and transforming data. The output was source code for conversions. However, the

generated source code was typically quite hard to read and thus difficult to troubleshoot

and maintain. Metadata capabilities were used to describe relationships between source

and target systems.

37

Figure 15. Code generators for database takes in schema for source database, schema
for target relational database and control file. The output is source code (From

Hammer and Timmerman, 2008).

2. Age of Network Systems

Creating a data warehousing was another solution for organizations to store and

manage multiple databases. It was used effectively in a distributed environment. Its

intended purpose was to facilitate analysis and reporting. As such, the technology

strategy hopefully met management requirements and organizational needs. However,

implementing and deploying warehouse solutions presented the follow challenges: 1) the

need to understand the nature of data available in source system; 2) the need to specify

the mapping logic between fields in data sources and attributes in warehouse schema; 3)

the consideration for initial loading of data warehouse; and 4) refresh contents of data

warehouse. Thus, various technological strategies were required to meet these multiple

challenges.

 Extract, transform and load (ETL) products provided database warehouse

developers with a graphical user interfaces (GUI) to configure mappings between source

and target databases and transformation logic to be performed on data values before

updating the data warehouse (Figure 16). ETL products utilized an embedded RDBMS to

process data, thus they had database engine-based architecture. Advantages would

include loose coupling of ETL components to promote ease of installation. The GUIs

38

enhanced usability of the system and embedded engines enabled capabilities such as audit

trail of transactions that passed through the engine. Trade-offs would include the

potential of the ETL engine becoming a bottleneck and performance overhead in view of

managing transactions to staging tables.

Figure 16. ETL architecture diagram. The deployment Engine could be a separate
physical machine or running on the same machine (From Hammer and

Timmerman, 2008).

Gateways provide relational interfaces to non-relational data sources. The

technology was installed on servers with non-relational data sources deployed. It

provided access to these data sources via Structured Query Language (SQL) or Open

Database Connectivity (ODBC) and a metadata audit trail back to the data sources.

Hence, such adaptation capability complemented the ETL engine.

Data profiling tools scan and analyze relational databases. They can operate with

or without formal definition of input tables and were able to predict field boundaries by

patterns in data. The tools generated reports that contain format and content of fields,

frequency counts of values in data fields, and primary keys.

Data quality tools contained rich algorithms for “fuzzy matching” and entity

resolution. For example, they were able to determine if two sets of data values refer to the

same entity. Hence, they were good for tasks such as standardizing names and addresses,

eliminating duplicate records, and determining household relationships.

39

In a data warehouse, metadata was used to represent its summary information. In

other words, metadata provided the consolidated values about groups of transactions

rather than the value of a single transaction. Challenges faced were to ensure metadata

was updated or accurate, the limitations of not capturing the actual fields, and the time-

consuming process to hand-code test and transformation logic.

Enterprise Application Integration (EAI) was defined as the use of software

architecture principles to integrate a set of enterprise software applications. EAI

leveraged methodologies and integration solutions such as object oriented programming

(OOP). Middleware technologies such as Common Object Request Broker Architecture

(CORBA), COM+, etc were possible enablers. Asynchronous message invocations were

enabled by message queuing. Data standards were defined with XML. In order for EAI to

be efficiently maintained, data interfaces that translated application-native API format

data interfaces to a standard message format in XML (or vice versa) need to be defined.

Adaptor technology emerged as software vendors offer software adaptors to ease

integration of Commercial Off-The-Shelf (COTS) applications. There were two types of

adapter technology. Plug-and-play adapters automated transaction-level integration

across various COTS applications. Each adapter translated between application-specific

formats to a neutral format supported by middleware. As such, adaptation was point-to-

point and application-specific. This results in maintainability and test complexity issues

when the adaptation strategy was scaled to a large organization’s requirements. Another

type of adapter was standards-based adapters (Figure 17). Basically, the adapters

provided access to multiple sources by using a standards-based API (ANSI SQL-92).

According to Hammer and Timmerman, the adapters were less automated but more

successful when compared to plug and play adapters. The prerequisites for standards-

based adapters are standardized formats for data exchange.

40

Figure 17. Standards-based adapters provide access to multiple sources by using
standards-based API (From Hammer and Timmerman, 2008).

3. Age of Desktop Systems

Software applications such as word processers and spreadsheets run on desktop

systems. These became popular and widely accepted because they met the business needs

and requirements as a productivity tool for working professionals. Basic IT was a

prerequisite skill for any office worker. Unlike servers which were housed in secured

server rooms, desktop systems are more prevalent. They operated as client end terminals

and are not as secure as servers. Desktop users stored information on the local machine.

Hence, relaxed controls on desktop machines could introduce security risks such as

compromising classified information transfer. Configuration management issues such as

using out-of-date documents was also possible.

4. Age of Internet

Web-based applications are often more successful than custom-connected

systems. This is because web-based applications enabled efficient search of large

amounts of information for specific documents and information of interest, mechanisms

for collaboration between individuals on different parts of a network, online shopping

purchases and remote technical support. On the other hand, web-based applications also

41

increased the complexity of integration. This is due to the increase in data types such as

text, audio, graphics and video. The boundaries of working groups had thus widened to

include customers, partners and even hackers. There was also increased security risk in

view of the vulnerabilities of open data and protocol standards such as XML and web

services invocation via HTTP bindings. Common security implications are important to

all web-based applications that are open standards compliant.

Enterprise Content Management (ECM) helps organizations keep track of

documents and provided an audit trail on the handling of each document. ECM had

improved to incorporate different types of content such as web pages, graphics, videos,

etc. Hence, ECM provides a means to manage and integrate different types of data, an

important capability for web-based applications.

Enterprise Information Integration (EII) is the process of integrating information

by providing data abstraction to a large set of heterogeneous databases. Hence, the user

only saw a single interface. SOA established an elegant style and sound principles of

designing, managing and implementing business modules as services in a distributed

network. However, there was a need for middleware to realize the mediation and

execution within a runtime environment that correlated a user’s logical or business view

of the problem space with backend data sources. EII may be one such enabler.

With metadata, users were empowered to make more informed decisions.

Through research and development, software integration was becaming more efficient

and secure. As software integration became a key competence within software industries,

vendors were becoming more aware of the importance of metadata strategies for software

integration. Thus the next challenge would be the need to assess the quality and

completeness of metadata and the amount of sharable metadata on the internet.

5. Code Generators for Integration

SOA and the success of many strategic applications were dependent upon an

enterprise approach to integration. There were considerations for code generators as a

preferred approach to conventional enterprise integration. Basically, this was because of

increased productivity which results in reduced cost. To elaborate: productivity gains

42

could be realized for code generator solutions in maintaining multiple runtimes, but with

performance degradation due to increased network traffic and heavy engine computation.

Secondly, productivity gains were realized when code generators were compared to hand-

coding in conventional enterprise integration. There were four criteria used for judging

code generators: extensibility with respect to data sources and functionality, degree to

which reuse and rapid change cycle were supported, ease of use, and acceptable

performance.

6. Current State of Integration Technology

XML-based applications are emerging. This is facilitated by a SOA-based

framework and infrastructure. WSA is one realization and web services are the enabler

for vendors to position their products as application service providers (ASP).

As integration technology continues to evolve and new capabilities emerge, it is

important to consider technology’s flexibility to adapt to future changes when a certain

integration technology solution is selected or developed. Choosing or developing

products with a strong metadata strategy can help to minimize the cost of adopting a

superior technology at a later time. There are three considerations in the selection of

metadata strategy: completeness of the metadata, its flexibility for query, and the

flexibility for the metadata to be read in another environment.

Industry analysts recommend organizations have an “integration competency

center” since integration is central to IT. Thus, with more funds directed at software

integration research and development, initiatives to accelerate the implementation of

more productive, usable and intelligent software-integration strategies and solutions will

be possible.

D. FUTURE INTEGRATION TECHNOLOGY

So what does the study of software integration trend leads us to? The importance

of metadata has been mentioned repeatedly through the evolution of integration

technology. The age of network systems has made deployment of software applications

and components on distributed, decentralized platforms feasible. This is a preferred

43

migration approach for legacy systems because they are typically constrained by the

resources owned by different agencies residing at different nodes in a distributed

network.

EAI also highlights the importance of data interfaces and integration

infrastructure to perform impact analysis. The complexity and necessity of adapter

technology cannot be neglected. Data-quality tools leverage heuristic algorithms and

Artificial Intelligence (AI) techniques to enhance data quality. The age of desktop also

highlights industrial awareness of the security risks from deploying rich software

applications on desktops. During the age of internet, EII-based solutions are identified as

an enabler for mediating and correlating users’ logical view of the problem space with

backend data sources within an SOA environment. Given the large amount of

information flooding into the internet, ECM is necessary. There are also some

considerations of technology that can potentially increase the productivity of software

integration, one of which is code generators. In the current trend of integration

technology, open standard-based protocols and standards such as XML and web services

are gaining momentum as the preferred industrial implementation of SOA solutions.

Future software integration technology will be data-centric. Data refers to vendor-

specific metadata, data sources, content and business views of end users. Metadata may

not be sufficiently expressive. Thus, semantic web concepts are a superior approach to

express and represent data, entities and relationships. Data needs to be made available

and sharable in the network. How effectively this propagates depends on the policy

maker. Software integration technology is only a means to establish the infrastructure

which is necessary to facilitate sharing of information.

Data has to be portable and agreeable in a format recognizable by all

collaborating nodes within the network. Open standards such as XML will be widely

adopted by industries to ensure data interoperability. Data interoperability and scalability

will be independent of proprietary runtime environments, platforms and programming

languages.

44

AI planning and software agents are the key enablers for refining and enhancing

quality of data processing for end users by facilitating automation in a run-time

environment.

Security will continue to be the key focus to enable a heterogeneous and open

software infrastructure. Software integration technology needs to ensure confidentiality,

integrity and availability of data.

Reliable, scalable, flexible and adaptable middleware that can ensure

interoperability between rich metadata and software agents is the basis to realize the

future software integration technology. Software reuse will continue to be a major design

consideration of the future integration technology.

The future integration technology should also transcend and not be bounded by

any software paradigm. For example, the query and implementation of query will not be

dependent solely on relational databases. Relational database and query will still exist in

view of legacy systems. Both adaptation and standardization approaches have to work

together. Adaptation will be interim approach until recommended/approved

standardization sets in. A consistent and robust methodology and framework will need to

be established to ensure such a process is repeatable.

The development and management of future integration technology will be driven

by methodology. There will be continuous attempts to classify, generalize and structure

integration processes. The purpose of an integration methodology is to simplify a

complex issue so that it is repeatable and its behavior predictable.

The application of human factors and human computer interaction principles is

necessary to improve the usability of integration technology. It should also be part of

evaluation and test criteria to ensure software quality. Inspiration can be drawn from

cognitive science to enhance the usablility and intelligence of software architecture.

E. “SMART” INTEGRATION

The continual emphasis on realizing a usable and intelligent architecture will

eventually lead to the idea of smart integration. Smart integration is an emerging

methodology for software integration. It is about the future design and implementation of

45

software integration technologies. The architectural analysis will need to consider the

high-level design requirements and strategies for architecture usability and intelligence.

These will then be realized as use cases and functionalities. A consistent and repeatable

process that integrates and supports the use cases has to be established. As such, smart

integration is part of an integral software integration process that involves both humans

and technology. Finally, performance criteria used to evaluate integration processes and

technology will be clearly defined. The evaluation and feedbacks will be part of the smart

integration process.

At framework implementation, software integration should be managed and

executed autonomously by software agents. Adaptation code required to link different

software components together will be auto-generated. The associated unit test classes can

also be auto-generated. The end-user is required to manage and facilitate integration at

the business level. The constraints, rules and logic required to match make and adapt

various components are well defined and supported by state-of-the-art data modeling

techniques such as the semantic web concepts. End users are equipped with well designed

user interface and AI decision support tools. Hence, data can be efficiently and

effectively managed by end users. Low level coding, implementation, testing and

deployment can be undertaken by systems. As such, engineers may not be required to

perform hard core coding. Instead, the focus can be on the configuration of software

adaptation components.

F. THE IMPLICATION TO SOA SOLUTIONS

1. SOA Design Principles

SOA strategically aligned itself as the next trend in software integration

technology. There are eight categories of SOA design principles (Erl, 2008), as shown in

Figure 18. WSAIF will be usable and intelligent. It is a realization of SOA. WSAIF will

be an enabler for smart integration in the SOA paradigm. Principles that result in the

implementation of specific service design characteristics include standardized service

contract, service reusability, service autonomy, service statelessness and service

discovery. Principles that shape and regulate the implementation of design characteristics

include service loose coupling, service abstraction and service composability.

46

The purpose of the service contract is to ensure a consistent way to describe

service capabilities and overall purpose of the service. The key idea of service reusability

is for services to contain agnostic logic such that they can be reusable enterprise

resources. This will increase business agility, realize an agnostic service model and

service inventories. There are three types of planned reusability. Tactical reusability

requires immediate implementation of services that meet a critical requirement. Targeted

reusability refers to service implementation meeting immediate and near-future

requirements. Complete reusability refers to service implementation with a

complementary range of functionality. Service autonomy refers to the run-time and

design-time autonomy of a single service. Run-time autonomy refers to the control over

processing logic when the service is invoked. Design-time autonomy refers to the control

over making changes to the service over its lifetime. A service is designed to be stateless.

Having the service stateless greatly reduces the computational complexity in maintaining

state information. Hence, this maximizes service scalability and performance. Service

discovery helps to determine if a required business function is made available within the

service inventory. Service loose coupling refers to minimal dependency between a

service contract and consumers and between a service contract and its underlying

implementation. The motivation for service abstraction is to publish only necessary

information and avoid dissemination of redundant service information. The idea of

service composability is to match make or assemble different services. This establishes a

process to solve a larger problem.

47

Figure 18. There are eight categories of SOA design principles (From Erl, 2008).

2. Envisioned WSAIF – A Realization of SOA

The envisioned Web Services Architecture Intelligent Framework (WSAIF) will

be usable and intelligent. WSAIF is a realization of SOA. It handles the interoperability,

facilitation, implementation and methodology for integrating the various SOA-based

open standards. Interoperability refers to the well-defined component interfaces, model

representation and protocol for cross-component interaction. Interoperability also takes

into account a flexible approach to adapt SOA-related standards to WSAIF. Facilitation is

the conceptual and logical sequence/order how the various WSAIF components work

with each other. Implementation realizes and manages the run-time environment. It

controls the deployment, invocation and recovery of the components within the run-time

environment. Most importantly, the WSAIF needs a robust and consistent methodology

48

to integrate and hold the components together. There are five major steps to the

methodology: architectural analysis; identifying key areas of functionality; definition of

strategy and process; planning for auditability and reuse; and criteria for evaluating

integration technology (Hammer and Timmerman, 2008).

WSAIF will provide an Object Oriented abstraction that sits between the

component interfaces and SOA-based open standards. WSAIF will be able to interoperate

and perform tasks implemented by different open standards. Hence, WSAIF will be

adaptable to SOA variations. For example, WSAIF can augment the process ontology

defined in OWL-S with the adaptation rules defined in a WSBPEL assign element. The

abstraction will also make the SOA variations transparent to the user of WSAIF. Hence,

to the user, WSAIF is generic, flexible and usable.

WSAIF will be intelligent. It will exhibit autonomous behavior such as self-

integration of web services, self-orchestration of business workflows and self-healing

when web services deployment status changes. In other words, it will dynamically put

together a comprehensive set of tools and data for a specific purpose and domain.

G. ENVISIONED WEB SERVICES ARCHITECTURE INTELLIGENT
FRAMEWORK (WSAIF)

WSAIF needs to consider semantic web services architecture as a high level

functional and architecture requirement (see Figure 19). This includes service discovery,

service engagement (service contracting and negotiation), enactment and engagement

(process monitoring, failure handling, dynamic composition, etc), community support

services (common and reusable services) and quality of service.

1. WSAIF High Level Functional and Architecture Requirements

Service discovery – This high level functional requirement includes providers

describing the identifiers, capabilities, queries, constraints, behavior, supported functions

and abstract characterizations of offered services. Abstract characterizations of services

are required for matchmaking purposes. Matchmakers compare the description of queries,

capabilities, constraints and supported functions. Requesters verify that the discovered

49

services meet the precondition requirement before using them. Architecture requirements

include protocols for advertising and service discovery purposes.

Service engagement – This high level functional requirement includes the

formulation of service requests, the basis for agreement, contracting preliminaries and

contracting negotiation. Architecture requirements include protocols for negotiation and

services to manage negotiation and auditing.

Service enactment and engagement – This high level functional requirement

includes interpretation and translation of responses when the requester and provider use

different ontologies for communication. With a good basis for choreography,

interpretation and execution, the capability will result in higher quality dynamic service

composition. The requirement for mediating and delegating processes that are composed

is also important. Coupled with the mediating process is the process for status

monitoring. In the event that an abnormality occurs, a notification is triggered. Service

failure handling and compensation are required if the processes run into exceptions.

There is also the need to resolve disputes and ensure compliance for services involving

third-party tools. Requirements to ensure audit tracking, explanation, security and

concurrency controls are important for SOA deployed in a multi-agency environment

where providers and requesters for services can assume different roles and access.

Architecture requirements include services for process mediation, scheduling, execution

and composition. Status-logging and policy monitoring are also part of the architecture

requirements.

Community Support Services – This high level functional requirement includes

services for ontology lookup, mapping, version control, security, group membership, trust

reasoning, community based preference and reliability reporting. It is also important to

consider policy, protocol and lifecycle management services.

The quality of service (QoS) level agreement has to be defined. Considerations

for QoS include deadlines, accuracy and cost. QoS has implications regarding how

services are advertised, topics for negotiation processes, etc. There should be a means to

monitor QoS and control the services accordingly.

50

Figure 19. Semantic web service architecture high level functional and architecture
requirements (From Burstein et al., 2005).

Client (green) and service provider (blue) goal descriptions (hexagons) drive the

three main phases of interaction (discovery, engagement, and enactment). At the lower

level, these goals are communicated during message exchanges utilizing the protocols

(green boxes) that follow general, phase-specific patterns (Bursteinet al., 2005).

2. WSAIF Components

With the design considerations and capabilities mentioned above, WSAIF will be

sufficiently intelligent to filter, identify and notify relevant, reliable and useful

information to the user. Thus, WSAIF is usable from knowledge management

perspective.

To realize the functional and architecture requirements, components of WSAIF

include (Figure 20): orchestrator (elaborated in this paper in Section 6); matchmaker (to

facilitate autonomous match-making of web services); agents (applied heuristic search for

the right web services); adaptor (to address the heterogeneity problem between two web

methods); communication (supporting asynchronous and synchronous processes);

51

security; choreography; and user interface. The WSAIF manager component is the main

controller for the architecture framework. Each of WSAIF components will be elaborated

below.

WSAIF Orchestrator – The purpose of the Orchestrator is to establish a

comprehensive and consistent representation to model composite processes or workflows.

The software framework establishes an abstraction between a common set of APIs that

ensure interoperability between WSAIF components and the various open standards for

modeling business processes such as OWL-S and WSBPEL.

WSAIF Matchmaker – The purpose of WSAIF Matchmaker is to facilitate the

execution and search for suitable/matching services.

WSAIF Agents – The Agents component implements the various AI search

algorithms. WSAIF agents assess the process scenario and execute the most suitable AI

search algorithm. It recommends suitable services.

WSAIF Choreography – The Choreography component specifies the pattern or

sequence of assets for a particular service. This information is an input to the WSAIF

Matchmaker. The framework abstraction incorporates open standards such as WS-CDL.

WSAIF Adaptor – The Adaptor component handles the syntactic and semantic

mismatches between parameters of atomic processes which form part of a composite

process. The translation logic that “glues” two atomic processes is expressed in XSLT.

WSAIF Communication – The Communication component implements and

supports synchronous and asynchronous communication between atomic processes.

Synchronous communication simply means all parties involved in a communication have

to be present at the same time. It is direct. Thus, a request invoked by a party would

expect and wait for a response from the receiving party. An example of synchronous

communication is chat. Asynchronous communication does not require all parties to be

present at the same time. Thus, a request invoked by a party need not wait for a reply. An

example of asynchronous communication is email. WSAIF Communication should

support both wired and tactical wireless environment. Design strategies for overcoming

limited bandwidth include incorporating Efficient XML Interchange (EXI) and lazy

52

loading (i.e,. load in batch and only by need basis). Design strategies for overcoming

limited connectivity include using robust asynchronous messaging framework.

WSAIF Security – This is an important component because services are deployed

in a multiple-agencies environment. Providers and consumers of services can belong to

different agencies. Each of them will have a specific role and authenticated resources.

Hence, access control, authorization and authentication of web services are important. It

is also important that the messages delivered from one agency to another need to preserve

confidentiality and integrity. Thus, SSL and open standards such as XML-Security which

includes XML encryption and XML signature are important realizations of such security

design requirements.

WSAIF User Interface – The User Interface component works with other

components and provides meaningful display of useful and important information. It also

provides an intuitive means for users to employ the various functionalities in WSAIF.

The WSAIF User Interface is flexible. An end user is able to configure and customize the

specific UI components to be used for his dashboard. A UI mediator will synchronize and

facilitate updates on dependent UI components when the information on one UI

component changes. The WSAIF User interface will be built on a rich client platform.

This is necessary to support more complex and dynamic UI interactions and controls.

Furthermore, rich clients are able to cache and manage larger batches of information.

Thus, it has the benefit to retain functionality on the client even when the network

connection drops.

WSAIF Manager – The WSAIF Manager is the main/key controller for the

architecture framework. WSAIF Manager understands the current process status and the

abstract requests from WSAIF Orchestrator. WSAIF Manager then triggers WSAIF

Matchmaker which takes in the input of WSAIF Choreography before formulating a

detailed matchmaking request. WSAIF Matchmaker then sends the request to WSAIF

Agent for execution. WSAIF Agent assesses the matchmaking request and search

scenario. It selects the most suitable search algorithm, generates a search agent and

performs search. WSAIF Agent then returns recommended services to WSAIF Manager.

WSAIF Manager then sends the recommendation to WSAIF UI which then displays the

53

result intuitively to the end users. End users interact with WSAIF UI and any updated

information on business processes is sent to WSAIF Orchestrator.

Figure 20. The envisioned WSAIF and its architecture components.

H. SUMMARY

The chapter has discussed the evolution of software integration technologies.

Understanding the trends and associated failures or successes helps in the speculation of a

future integration technology which is usable and intelligent. The emphasis on such

attributes in future integration technology will eventually lead to smart integration

approaches. The smart integration approach will be supported by a well-defined and

robust methodology. To put it simply, future software integration approaches will no

longer require software engineers to manually produce adapter code to ensure two

software components interoperate. Rather, the approach is to design and implement user-

friendly executive dashboard, configuration tools and intelligence into the software

architecture so that software components can integrate without the need for hand-coding.

In this thesis, SOA is used as the architecture paradigm to realize the concept. SOA

design principles were reviewed in this chapter. The design principles will be the key

design considerations for WSAIF, resulting in the high level functional and architecture

54

requirements based on its association and relevance to semantic web service architecture.

The chapter concluded with a detailed description of WSAIF software components

required to address the functional and architecture requirements.

55

IV. SAVAGE WEB SERVICES

A. INTRODUCTION

This chapter first addresses the various implementation approaches for SAVAGE

web services. The use cases are then discussed. The UML component diagram which

realizes the use cases is elaborated. This is followed up by the details of class hierarchy

for each component. The details of class object sequence interactions for each use case is

also elaborated. The chapter concludes with description of the design approach to extend

SAVAGE web services to incorporate new web methods.

B. USE CASES

Figure 21. SAVAGE web services use case diagram in UML shows four use cases.
The user uses the client to invoke findX3DModel, getX3DModel, findDESModel

and getDESModel web methods.

There are two web services implemented for SAVAGE, namely X3DWebService

and DESWebService. The web services are implemented in Java. “Client” refers to an

external Java program which can run on a different machine. “Server” refers to the

machine on which SAVAGE Web Services are deployed. For X3DWebService, the

56

implemented web methods are findX3DModel and getX3DModel. For DESWebService,

the implemented web methods are findDESModel and getDESModel web methods. The

technical use case specification for each of the web methods are as follows:

1. findX3DModel Web Method Use Case Specification

The purpose of the findX3DModel web method is to find a list of matching X3D

models given search term(s). The client invokes web method findX3DModel with

parameter searchTerm. Parameter searchTerm is the keyword(s) of interest given by

users. the client invokes the findX3DModel web method. The server receives the web

service request from the client. The server iterates through page elements in the

SAVAGE catalog and performs a string match between searchTerm and the content of

name, title and description attributes. For the content of the description attribute, words

are first tokenized before each tokenized word is compared with searchTerm. The server

returns a list of matching X3D names and their associated URLs in XML format back to

the client.

2. getX3DModel Web Method Use Case Specification

The purpose of the getX3DModel web method is to retrieve an X3D model file

given its URL. The client invokes web method getX3DModel with parameter URL. URL

refers to the unique resource locator for the X3D model file on the SAVAGE server. The

server receives the web service request from the client. The server goes to a specific sub-

directory as indicated by the URL. The server reads the X3D model file into a string and

returns the content to the client.

3. findDESModel Web Method Use Case Specification

The purpose of the findDESModel web method is to find the matching DES

behavior model given an X3D visualization model. The client invokes web method

findDESModel with parameter x3dURL. The server receives the web service request from

the client. The server iterates through page elements in the SAVAGE catalog and if there

is a SMAL element defined (specifically BehaviorParameterSet child element), the

server will retrieve information from the agent and URL attributes. This information is

then returned to the client in XML format.

57

4. getDESModel Web Method Use Case Specification

The purpose of the getDESModel web method is to retrieve the DES behavior

model in XML format from the SAVAGE repository. The client invokes web method

getDESModel with parameter desURL. desURL will indicate the specific subdirectory

where the DES model resides in the SAVAGE repository. The server receives the client’s

web service request, retrieves the DES model from the SAVAGE repository and returns

the DES model to the client.

C. DESIGN CONSIDERATIONS

As discussed in Section 2, there are five key architecture considerations; namely,

reliability, performance, scalability, security and maintainability. The scope and defined

quality of SAVAGE web services design will be based on the five architecture

considerations.

SAVAGE web services have to be maintainable. There will be distinct

architecture layers (implemented via Java packages) to contain business logic and model

related classes.

There is a need to consider possible future enhancements to include new web

methods and associated business logic implementation. Hence, SAVAGE web services

need to be extensible. Web service classes should be distinct in their roles and the name

of web method should well describe its functions. The Strategy pattern is selected to

create the layer of abstraction between the web service classes and the implemented

strategy for the associated web method. This will decouple and enhance extensibility for

the implementation of web methods and their associated business strategies.

Consumers of web services can be external parties within the collaboration

network. Hence, as part of the maintainability consideration, it is important to ensure an

intuitive way to assess the SAVAGE web services. No special XML format is required

from consumers. Web services are invoked with simple input types. For example, the

findX3DModel web method should take in the search term as the input string. It is not

necessary for the input string to conform to any specific XML format in this case.

58

This is an experimentation or demonstration setup, hence SAVAGE web services

are considered reliable if the invocations do not crash the system given the following

conditions:

1. Small number of concurrent users (i.e., less than 5 users)

2. Support short demonstration period (i.e., less than 2 hours)

Thus, given the above design considerations, an enterprise solution which requires

clustering of web services on multiple machines is not necessary.

The performance of the SAVAGE web services should be acceptable.

Synchronous invocation of web services should be less than 5 seconds. If the

synchronous web services call requires longer processing time, visual feedback should be

implemented at the application user interface.

 The scope of the SAVAGE web service implementation should include security

consideration for communication confidentiality. Thus, transport level encryption such as

SSL is necessary.

D. IMPLEMENTATION PROCESS

This section describes the development process for SAVAGE web services.

Forward engineering using NetBeans provides the capability for NetBeans to auto-

generate classes, attributes and methods (without business logic implementation) from

UML diagrams. Reverse engineering (Figure 21) leverages available code to generate

UML components, which are the basic building blocks for UML diagrams. NetBeans and

JAX-WS auto-generate WSDL, schema and Java classes for the web methods. To

establish web services operation hosted on a server, use the “new web service” option

in NetBeans. For client connectivity to web services, use the “new web service client”.

As such, establishing a web services connection can be done easily in NetBeans.

Developer simply performs “drag and drop” operation on the web services client

connection instances into Java main class or JSP code. Alternatively, the developer first

develops WSDL using an XML editor such as XML-SPY. Then, WSDL can be imported

into NetBeans using the “new Web Services from WSDL” option. NetBeans and JAX-

WS then read in information such as operations, endpoints and bindings from WSDL and

59

auto-generate schema and Java classes for the web methods. The developer can then use

NetBeans to perform forward or reverse engineering to create web services after

importing WSDL.

Figure 22. Reverse engineering leverages available code and generates UML
components. NetBeans and JAX-WS auto-generate WSDL, schema and Java

classes for the web methods.

In the reverse engineering process, WSDL, Schema and Java classes for web

service connectivity are auto-generated by NetBeans and JAX-WS.

60

Figure 23. Forward engineering using NetBeans provides the capability for NetBeans
to auto-generate classes, attributes and methods (without business logic

implementation) from UML diagrams.

61

For the forward engineering process, WSDL, schema, and Java classes for web

service connectivity are auto-generated by NetBeans and JAX-WS. The web services

implementation, consisting of Java classes with their class hierarchy, class attributes and

methods (without business logic implementation), can be auto-generated from the UML

diagrams. Details are described in the UML activity diagram shown in Figure 22.

WSDL can be configured separately by using an XML editor. The pre-configured

WSDL can be imported into NetBeans by selecting option “new web service from

WSDL”. The developer can then perform the remaining steps in the forward or reverse

engineering processes using NetBeans. Details are illustrated in the UML activity

diagrams in Figures 22 and 23.

62

Figure 24. Forward engineering using NetBeans, with WSDL configured separately
and imported into NetBeans.

63

Figure 25. Reverse engineering using NetBeans, with WSDL configured separately
and imported into NetBeans.

64

The development process used for the development of SAVAGE web services is

reverse engineering using NetBeans. JAX-WS auto-generates WSDL. The reason why

this approach is chosen is because Java source code is developed first. The NetBeans

UML models are reconstructed from the source code.

To create a project using NetBeans UML, use the NetBeans create project wizard.

Select category UML and then Java-Platform Model. NetBeans will create a UML model

in Java.

E. DESIGN COMPONENTS

Figure 26. SAVAGE web services component diagram in UML. The components are

the realization of the use cases.

There are four components in the demonstration design, as shown in Figure 26.

Each component has its distinct function. The components are the realization of the use

cases and design considerations. Each component is a Java package. The X3DWSMethod

and DESWSMethod packages contain web methods for X3D and DES web services,

respectively. The WSController package contains classes that implement the various

business rules and logic for the web methods. The WSModel package implements the

various entities or models. These entities are the basis for the business rules in

WSController to work on. Class methods in X3DWSMethod and DESWSMethod do not

use the class methods in WSModel directly. Instead, WSController plays the role of

mediator between the various web methods and the common entity classes. This design

approach facilitates component reuse such as WSModel being a common entity used by

different web services.

65

F. DETAILED DESIGN

1. UML Class Diagram

Figure 27 shows the detailed design of classes in the WSController package.

Figure 27. SAVAGE web services classes implemented in WSController component.
Class diagram in UML.

The Strategy pattern is a type of behavioral pattern. It comprises a set of classes,

where each class implements a particular behavior. These implemented behaviors can be

flexibly applied to the model, changing the way the application behaves on the fly. For

SAVAGE web services implementation, the Strategy pattern is used to implement the

business logic of each web method. Thus, there is one implemented strategy class

corresponding to each web method. They are X3DFindStrategy, X3DGetStrategy,

DESFindStrategy and DESGetStrategy. WSStrategy is the abstract class that implements

66

abstract method executeOperation. The specific implementation of executeOperation is

defined in the extended strategy classes. The context classes are X3DWebService and

DESWebService in X3DWSMethod and DESWSMethod accordingly. The context classes

use the strategies by invoking the abstract method executeOperation. executeOperation

returns a string and the output (X3D model, DES model, etc) will depend on the

implemented executeOperation defined in the extended strategy classes.

The extended strategy classes use WSSingleton. Singleton is a type of creational

pattern. The singleton class creates and maintains the global static/single instance of

class. Other classes use the singleton class to retrieve the global instance. For Savage web

services, the static classes instances maintained by Singleton are catalogDocument (to

constructed the Document Object Model (DOM) model for the SAVAGE catalog XML

file), catalogFilePath (specific file directory where the SAVAGE catalog file is stored),

catalogFileName (file name for the SAVAGE catalog file), savageFilePath (specific file

directory for the root directory of the SAVAGE X3D repository; the precise

location/subdirectory of a specific X3D model resides in its associated X3D URL) and

visualModelPath (specific file directory for the root directory for the SAVAGE DES

repository; the subdirectory resides in DES URL).

WSUtility basically contains reusable utility operations such as

getContentFromFile.

67

Figure 28. SAVAGE web services classes implemented in the WSModel component.
Class diagram in UML.

There are three classes in the WSModel package (Figure 28). They are

WSCatalogReader, X3DFindResultEntity and DESFindResultEntity. WSCatalogReader

reads in and builds DOM for the SAVAGE catalog file. X3DFindResultEntity class

encapsulates the result (list of X3D URLs and names) computed by X3DFindStrategy in

HashMap. X3DFindResultEntity will be parsed into XML format before returning to the

findX3DModel web method. Likewise, DESFindResultEntity class is used to encapsulate

the result (list of DES agents and URLs) from DESFindStrategy.

68

Figure 29. SAVAGE web services classes implemented in X3DWSMethod and
DESWSMethod components. Class diagram in UML.

X3DWebService implements web method findX3DModel which takes in

searchTerm as parameter and returns a list of X3D URLs and names in XML.

getX3DModel is the implemented web method to retrieve an X3D model given X3D

URL. DESWebService implements web method getDESModel and findDESModel.

ExecuteWebServiceOperation is a generic private method and its parameter is the abstract

class WSStrategy. In other words, it can be used by the different web methods. Its role is

to facilitate the execution of specific strategy passed in by the web methods.

2. UML Sequence Diagram

The UML sequence diagram in Figure 30 shows the sequence of interactions

among different class instances. The detailed interactions between classes can be

complicated, hence it is important to capture and focus on the essential class interactions.

69

Figure 30. SAVAGE web services sequence diagram in UML for findX3DModel web
method.

JavaClient invokes findX3DModel web method. findX3DModel performs

executeWebServiceOperation, which then invokes executeOperation. X3DFindStrategy

getCatalogDocument from WSSingleton. WSSingleton executes savageCatalogConstruct

if the DOM for the SAVAGE catalog is not constructed. X3DFindStrategy will then

iterate through the nodes in DOM. When it encounters page construct, it performs

searchPage which does a string comparison between searchTerm and the contents of

name and title attributes. searchPage also invokes searchDescription. SearchDescription

tokenizes the description into keywords. Each keyword is then compared to searchTerm

to identify matches. X3DFindEntity is constructed to store the list of relevant X3D URLs

and names. X3DFindStrategy then marshala X3DFindEntity into an XML String via

Marshaller. This XML String is returned to X3DWebService before it is returned to

JavaClient via the findX3DModel web method.

70

Figure 31. SAVAGE web services sequence diagram in UML for getX3DModel web
method.

Figure 31 shows the UML sequence diagram for the getX3DModel web method.

JavaClient invokes getX3DModel web method with X3D URL as the input parameter.

After the invocation of executeOperation, X3DGetStrategy invokes getSavagePath from

WSSingleton. getSavagePath returns the root directory of the SAVAGE X3D repository.

The specific location and name of the X3D model can be extracted from the X3D URL.

X3DGetStrategy then calls getContentsFromFile and the X3D model is returned to

JavaClient via X3DWebService.

71

Figure 32. SAVAGE web services sequence diagram in UML for findDESModel web
method.

JavaClient invokes the findDESModel web method with X3D URL as the input

parameter (Figure 32). Upon execution of executeOperation, DESFindStrategy invokes

getCatalogDocument (SAVAGE catalog in DOM) from WSSingleton. DESFindStrategy

iterates across the DOM. For each page element, DESFindStrategy performs the isX3D

check. isX3D does a string comparison between the input parameter of the findDESModel

web method and the URL attribute of the page construct. If the X3D URL matches, it

calls extractBehavior from the BehaviorParameterSet element. extractBehavior reads the

content from agent and URL attributes from the SimulationAgent element.

DESFindStrategy instantiates DESFindResultEntity to store the list of agent and DES

URLs in a class attribute of type HashMap. DESFindResultEntity is marshaled into XML

before returning to JavaClient via the findDESModel web method.

72

Figure 33. SAVAGE web services sequence diagram in UML for getDESModel web
method.

JavaClient invokes the getDESModel web method with DES URL as the input

parameter (Figure 33). Upon executeOperation, DESGetStrategy triggers

getViskitModelPath, which returns the Viskit model root directory. The specific sub-

directory and the name of the DES model file can be extracted from DES URL.

DESGetStrategy calls WSUtility method getContentFromFile to read the DES model file

from the SAVAGE Viskit repository. The DES model is then returned to JavaClient via

the getDesModel web method.

3. SAVAGE WSDL

 The Java API for XML Web Services (JAX-WS) generates WSDL files for

SAVAGE web services. The implemented Java web method is in class X3DWebService.

73

Figure 34. Test web service using NetBeans.

 To view the WSDL file, simply right click “X3DWebService” under the Web

Services source directory and select “Test Web Service” (see Figure 34).

Figure 35. Web browser displays hyperlink to the X3DWebService WSDL file.

 The endpoint of the web service will be displayed on the web browser. The

address of X3DWebService in the development environment is

http://localhost:9090/SAVAGEWebServices/X3DWebService (Figure 35). The WSDL

resides in http://localhost:9090/SAVAGEWebServices/X3DWebService?wsdl. The link

to the WSDL is clicked. The generated WSDL file for the X3D web service is as shown

below (Figure 36). The server is localhost because the current development environment

is the author’s personal laptop. If web services are hosted on another web application

server, the specific name and port number of the server is used instead.

74

Figure 36. WSDL file that describes X3DWebService.

 The WSDL describes information about X3DWebService which includes the web

services operations (findX3DModel and getX3DModel), SOAP binding and the web

services endpoint information such as web service address location.

75

The address of DESWebService on development environment is

http://localhost:9090/SAVAGEWebServices/DESWebService. The WSDL resides in

http://localhost:9090/SAVAGEWebServices/DESWebService?wsdl. The generated

WSDL for DESWebService is as shown below (Figure 37).

Figure 37. WSDL file that describes DESWebService.

76

G. RESOURCES AUTOGENERATED BY NETBEANS AND JAX-WS

NetBeans generates Java source which imports the JAX-WS library. These

classes are DESWebService.java and X3DWebService.java. Web services are indicated

with @WebService(). Web methods are indicated with @WebMethod. In the case of

SAVAGE web services development, there are three types of resources auto-generated by

JAX-WS. JAX-WS generates web method Java classes. Java classes generated for the

X3D web service are FindX3DModel.java, FindX3DModelResponse.java,

GetX3DModel.java and GetX3DModelResponse.java. Java classes generated for the DES

web service are FindDESModel.java, FindDESModelResponse.java, GetDESModel.java

and GetDESModelResponse.java. Basically, these are the classes required to generate the

other two resources, which are the WSDL and the associated schemas for X3D and DES

web services. Java Architecture for XML Bindings (JAXB) marshals the Java classes to

XML.

H. EXTENDING SAVAGE WEB SERVICES

Additional web methods for SAVAGE web services are needed. For example,

X3DWebService might incorporate web methods that perform add, delete and update of

X3D models. Hence, the SAVAGE web services design has to be extensible. In principle,

there are three simple steps to extend SAVAGE web services.

Step 1 – If it is an added web method for an existing web service (e.g.,

X3DWebService), then add the class method into the existing web service class. If the

required web method does not belong to the existing web service, then create a new

[model name]WSMethod package, create a new web service class [model

name]WebService in the package and insert the web method into the newly created class.

Note that web method calls generic private method executeWebServiceOperation (with

input parameter WSStrategy) which then performs standard invocation of the specific

strategy passed in by the web method.

Step 2 – Changes are required in the WSModel package. The reusable SAVAGE

catalog model does not meet the design requirement. The design approach is to add a

builder class to construct the new model of interest. If the model is meant to be a global

77

instance, then use WSSingleton to create and manage the model instance. Create new

result entity classes if there is a design requirement to parse the result set into XML.

Step 3 – Changes are required to the WSController package. Extend WSStrategy

for each web method added. Each extended strategy class [model

name][function]Strategy will implement executeOperation which encapsulates the

business logic or rules for the web method.

Enhancements can be performed in two ways:

1. Insert web methods, strategy, model classes and their associated methods in

the NetBeans UML. Invoke NetBeans forward engineering to generate the

necessary code stubs for the classes and methods. Proceed with detailed

implementation within the created class and methods. Perform NetBeans

reverse engineering to update the UML models after implementation. Test the

web method implementation before checking into SVN.

2. Implement directly in the code base. Update UML model via NetBeans

reverse engineering. Test the web method implementation before checking

into SVN.

I. SUMMARY

This chapter presents use cases and various implementation approaches for

SAVAGE web services. The components of SAVAGE web services were described in a

UML component diagram. The class hierarchy for each component was addressed in

UML class diagrams. Interactions between class instantiations were illustrated in UML

sequence diagrams. The chapter concluded by documenting the design approach to

extend SAVAGE web services.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

V. IMPLEMENTATION, DEPLOYMENT AND RESULTS

A. INTRODUCTION

This chapter starts off by elaborating the setup for the development environment.

The hardware and software required for the development of SAVAGE web services are

discussed. The implemented SAVAGE web services are deployed on SAVAGE servers.

The chapter concludes by discussing test results corresponding to each use case.

B. IMPLEMENTATION SETUP

Taking into consideration the design specified in Chapter IV, the hardware

required to support the demonstration on the development environment is simple. It is a

single machine setup. The machine runs on a 32-bit operating system, Intel® Core™ 2

Duo CPU T7300 @ 2.00GHz, with 2 GB RAM and runs on VISTA. If the application

runs on this machine and meets the design requirement, then it will likely run on other

types of machine (e.g., Mac, Unix, etc) with equivalent specifications.

The software required to be installed on the development and demonstration

machine is NetBeans Integrated Development Environment (IDE) 6.1 (version 6.0 will

do as well), Java Development Kit (JDK) version 6 (version 5 will do, too) and Tomcat

application server version 6. The NetBeans IDE is used for the implementation of web

services and to facilitate web services deployment.

80

Figure 38. View Tomcat application server log in command prompt.

The Tomcat application server can run off window service or command prompt

(run as administrator). Running the Tomcat application server in command prompt makes

it more convenient to test and troubleshoot because you can view the server log running

off the command prompt (Figure 38) while coding in NetBeans. The executable file for

running Tomcat application can be configured as window service. To manage window

services, go to Control Panel Administrative Tools Services. Select the service and

click on the play or stop icons to start or terminate window service (See Figure 39).

81

Figure 39. Manage window services panel shows name, description, status, startup
type and log on id of window services.

82

Figure 40. Create web service using NetBeans web service wizard.

The NetBeans project “SavageWebServices” is created to contain the

implementation of SAVAGE web services. It is a type of web application in NetBeans.

After this, right click the SavageWebServices web application and select “new

web services”. A “create web services” wizard will pop up. Fill in the web service name

and the Java package it belongs to. Click “finish” and the web service is automatically

generated.

83

Figure 41. NetBeans web service design view is used to add web service operations.

Use the visual designer to add web service operations (Figure 41). The source

code for the web method will be automatically generated.

Figure 42. NetBeans project view gives a good overview of projects, software
components, library, configuration files and source code.

84

Taking reference to the SAVAGE web services design specified in Chapter III,

implement the source code for the web methods in X3DWebService and DESWebService.

The source code for the various classes in DESWSMethod, X3DWSMethod, WSController

and WSModel Java packages is also implemented according to what is specified in the

design specification. The layout of the created packages, classes and web services is

shown in Figure 42.

Figure 43. Undeploy and deploy web services using NetBeans.

To build and deploy Savage web services, right click SavageWebService web

application and select “build from menu”. Upon successful build, select Undeploy and

Deploy from the menu (Figure 43). Ensure that the Tomcat server is running before

invoking the deploy option.

Should there be complications in the build and deployment process, select “clean

from menu”. Confirm that the application is undeployed on the Tomcat application

server. Restart the Tomcat server. Perform the build and deploy process again.

85

Figure 44. Test web services in NetBeans.

Right click the deployed web service and select Test Web Service from menu. In

the example shown in figure 44, the Internet Explorer (IE) browser is automatically

launched as client. The IE browser then invokes the X3DWebService.

86

Figure 45. WSDL file that describes X3DWebService.

The WSDL generated by JAX-WS is as shown in Figure 45. JAX-WS is part of

the J2EE platform from Sun Microsystems.

C. DEPLOYMENT

There are two main application servers used for the deployment (see Figure 46).

First is the APACHE web server. External clients make https invocations to this server.

The confidentiality of messages that are sent between clients and the APACHE web

server is ensured at the transport layer via SSL (port 443) encryption. The APACHE web

server also plays the role as proxy or façade to other SAVAGE data and application

servers. The motivation is to protect SAVAGE servers from external clients. SAVAGE

web services are deployed on a Tomcat web application server. The APACHE web server

redirects the web service invocation request to the Tomcat web application server. The

87

messages that are sent between SAVAGE servers are not encrypted for performance

reasons.

Figure 46. SAVAGE web services deployment diagram in UML. Web services are
deployed in SAVAGE Tomcat Web Application Server.

SAVAGE web services are tested and compiled using the NetBeans IDE on a

development machine. The Java war file is sent from the development machine via

Secure File Transfer Protocol (SFTP) to the Tomcat web application server

/USR/JAVA/TOMCAT/WEBAPPS/ directory. Tomcat web application server log files

are found in the /usr/java/apache-tomcat-5.5.17/logs directory.

D. TEST CLIENT SET UP

Create a separate project of type “Java application for Java client”. The Java client

is required to test the web methods. The Java client can be Java classes leveraging JAX-

WS to invoke SAVAGE web services. Alternatively, web services can be invoked via the

88

Java Servlet Page (JSP). A demonstration JSP client to invoke SAVAGE web services

was developed. The user selects the web method via the associated radio button and keys

in input parameters in the text box. The user then clicks the “Invoke Web Service” button

(see Figure 47). The selected web method is invoked. The client receives and writes the

XML result to a file. A hyperlink named “Savage Web Service Invocation Result” to the

file is automatically created on JSP (Figure 48). The user clicks on the hyperlink and the

XML result is displayed in a separate browser window. For an X3D model, the .x3d file

extension is automatically detected by the browser. Thus, it can be automatically

displayed with an X3D compatible viewer such as Xj3D Viewer. The list of X3D

resources is found in http://www.web3d.org/x3d/content/examples/X3dResources.html.

Figure 47. SAVAGE web services JSP test page. The user selects the web method,
keys in parameters and clicks “Invoke Web Service".

89

Figure 48. JSP test page that contains hyperlink to SAVAGE web service invocation

result.

NetBeans makes establishing the web services client easy. The developer right

clicks on “project” and selects “new web service client” (Figure 49). A wizard pops up

and prompts for the location of the WSDL (Figure 50). The WSDL locations for X3D

and DES web services in the development environment are found in

http://localhost:9090/SAVAGEWebServices/X3DWebService?wsdl and

http://localhost:9090/SAVAGEWebServices/DESWebService?wsdl, respectively. The

WSDL locations for X3D and DES web services in the production environment are found

in https://savage.nps.edu/SAVAGEWebServices/X3DWebService?wsdl and

https://savage.nps.edu/SAVAGEWebServices/DESWebService?wsdl, respectively. Upon

indicating the location of WSDL, NetBeans reads in the WSDL file to gather the

operations, endpoint and binding for SAVAGE web services. This information is used to

generate necessary Java classes which incorporate JAX-WS and other necessary Java

APIs to establish the web services connectivity. The code required to call these Java

classes can be easily generated by NetBeans and incorporated (via drag and drop) into a

Java main class or JSP. The Java main class or JSP will trigger the invocation of web

services when the program runs.

90

Figure 49. Creating web services client in NetBeans.

Figure 50. Web service client wizard is used to create the web service client that
facilitates connectivity to SAVAGE web services in NetBeans.

91

Once the web service client connectivity is established, NetBeans will respond by

generating and displaying “web service references” on the IDE (Figure 51). These are

Java objects that capture information about the web services.

Figure 51. Web services client established in NetBeans. Web service references
contain web service client objects which can be connected to a web service.

E. TEST RESULTS

Test plans were established for web methods findX3DModel, getX3DModel,

findDESModel and getDESModel. Tests were executed according to the test plan within

the implementation setup. All test results verified correct. The details of the test plan and

result for each web method are elaborated below.

a. findX3DModel Webmethod

Test plan – Java client invokes X3DWebService findX3DModel web

method. The search term (input parameter) is “F16”. X3DWebService receives the

request, processes the search term (performing string match test with the content of name,

URL and description attributes) and returns list of X3D names and URLs with attributes

that match the search term.

92

Figure 52. Source code that invokes findX3DModel web method in Java client main
class.

The code snippet that implements the Java client for this test plan is shown

in Figure 52. The search term “F16” is captured in variable searchTerm and the result

string (list of matching X3D names and URLs) is captured in variable result. The result is

printed out on the console.

Figure 53. Return result for FindX3DModel in XML.

The result XML is shown in Figure 53. The return result includes X3D

names and URLs of F16 and its related aircraft components (RearLeftWheel,

RearRightWheel and FrontWheel). All the models are retrieved from the file location

https://savage.nps.edu/Savage/AircraftFixedWing/F16-FightingFalcon-Turkey/. Hence,

the result is precisely correct.

93

b. getX3DModel Webmethod

Test plan – Java client invokes getX3DModel web method from

X3DWebService. X3D URL “https://savage.nps.edu/Savage/AircraftFixedWing/F16-

FightingFalcon-Turkey/F16.x3d” is the input parameter. X3DWebService will receive the

request, go to the specific file location in Savage repository and retrieve the X3D model.

The retrieved X3D model is returned to the Java client. The Java client displays the X3D

model on console.

Figure 54. Source code that invokes getX3DModel web method in java client main
class.

The code snippet in Figure 54 implements the Java client for this test plan.

The X3D URL “https://savage.nps.edu/Savage/AircraftFixedWing/F16-FightingFalcon-

Turkey/F16.x3d” is captured in variable URL and the result string (X3D model) is

captured in variable result. The result displayed by an X3D-compatible viewer is shown

in Figure 55.

94

Figure 55. Returned X3D model for getX3DModel web method. The X3D model is in
XML and is displayed by an X3D-compatible viewer.

One of the metadata elements that the X3D model describes is the

identifier containing the URL of the X3D model. The URL is the same as the input

parameter (X3D URL) passed in by the Java client. Hence, the result X3D model

displayed on the console is correct.

c. findDESModel Webmethod

Test plan - Java client invokes findDESModel web method from

DESWebService. X3D URL

“https://savage.nps.edu/SAVAGE/GroundVehicles/Emergency/WashingtonStatePatrolCr

uiser.x3d” is the input parameter. X3DDESWebService receives the web service request,

searches the SAVAGE catalog (specifically SimulationAgent under SMAL) for the

matching DES behavior, extracts a list of DES agent and URL, and parses the

information to XML before sending it back to the Java client.

95

Figure 56. Source code that invokes findDESModel web method in java client main
class.

The code snippet that implements the Java client is shown in Figure 56.

Input parameter (X3D URL)

“https://savage.nps.edu/Savage/GroundVehicles/Emergency/WashingtonStatePatrolCruis

er.x3d” is captured in variable x3DURL. The output parameter (list of DES URLs and

agent in XML) is captured in variable result. The result string is displayed on the console

(Figure 57).

Figure 57. Return result for findDESModel web method in XML.

The result corresponds to the set of DES behaviors described in the

SAVAGE catalog (i.e., given a matching X3D URL in the page element, the list of DES

behaviors is found in SMAL->BehaviorParameterSet->SimulationAgent element). Hence,

the result is correct.

d. getDESModel Webmethod

Test plan - Java client sends a request to getDESModel web method from

DESWebService. DES URL

96

“http://savage.nps.edu/svn/nps/ViskitModels/BehaviorLibraries/SavageTactics/Friendly/

MilitaryShip.xml” is the input parameter. DESWebService receives the request and

retrieves the DES model specified by the URL. The DES model is sent back to the Java

client.

Figure 58. Source code that invokes getDESModel web method in java client main
class.

Figure 58 show a code snippet of the Java client implementation. DesURL

stores the input parameter and variable result stores the DES model. The result string is

displayed on the console (Figure 59).

97

Figure 59. Return result for getDESModel web method in XML.

The result DES model shows package=”Friendly” and

name=”MilitaryShip”. This corresponds to “Friendly/MilitaryShip.xml” from the input

variable. Thus, the DES model retrieved is correct.

F. SUMMARY

This chapter elaborates on the implementation setup on the development

environment. The chapter then elaborates on the deployment of SAVAGE web services.

The JSP client is required to establish connection and invoke SAVAGE web services.

The chapter rounds up by describing the test plan and results for each web method

(findX3DModel, getX3DModel, findDESModel and getDESModel). Each web method

corresponds to its use case described in chapter IV.

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

VI. WSAIF ORCHESTRATION AND ADAPTATION

A. INTRODUCTION

This chapter first talks about a SAVAGE orchestration scenario. WSBPEL and

OWL-S are used to model the orchestration scenario. A comparison between WSBPEL

and OWL-S is made based on observation of the SAVAGE orchestration scenario.

Comparison between WSMO and OWL-S is summarized from the literature. The chapter

ends by explaining the approach to integrate software agents and data models to enable

web services integration on the fly.

B. WS ORCHESTRATION SCENARIO FOR SAVAGE WEB SERVICES

Web method findX3DModel will invoke web method getX3DModel or

findDESModel depending on an if condition passed in when the process is triggered. If

the findDESModel web method is triggered, then web method getDESModel will be

triggered sequentially to retrieve the associated DES behavior model.

100

C. SAVAGE WS ORCHESTRATION AND ADAPTATION USING WSBPEL

Figure 60. SAVAGE WSBPEL composite process in NetBeans design view. The
composite process includes SAVAGE web services methods.

NetBeans provides a tool to create WSBPEL (see Figure 60). NetBeans classifies

WSBPEL activities into three types. The web service activities type includes invocation,

receive, reply and partner link to partner web services. The basic activities type

comprises essential constructs that are required throughout the composite workflow.

Examples are if, wait (wait for an indicated period of time), empty (do nothing), and

assign (mapping between variables). The structure activities type is able to group or

restrict activities within a composite workflow. Examples of the structure activities type

are While, ForEach, RepeatUntil, and Sequence.

It is simple to create a WSBPEL model using the project creation wizard. Just

select new project, SOA category and BPEL module.

101

To import SAVAGE web service WSDL, simply right click SAVAGE web

services and invoke “generate and copy WSDL” to BPEL module.

Drag and drop WSDL onto the drawing panel. After which, drag and drop

necessary WSBPEL activities (web service, basic and structure) from the right side panel

into the drawing panel to construct WSBPEL composite workflow (see Figure 61).

Figure 61. WSBPEL mapper view in NetBeans. The mapper creates WSBPEL assign
activity which maps/copies the output parameter/variable of one web method to

the input parameter of another web method.

In this example, the composite workflow is triggered by the

SavageBpelX3DDESSeqLink web service. startComposite activity receives the invocation

from SavageBpelX3DDESSeqLink. The input parameter to the web service is

searchString (keyword of interest), isGetX3DModel (type Boolean to indicate whether to

retrieve an X3D model) and isFindGetDESModel (type Boolean to indicate whether to

find matching DES behavior URLs and retrieve their associated models).

102

Figure 62. WSBPEL NetBeans mapper view with doXSLTransform.
doXSLTransform defines adaptation rules that resolve syntactic or/and semantic

mismatches between two parameters.

The Assign activity maps/copies from the output parameter/variable of one web

method to the input parameter of another web method. If there is a syntactic or semantic

mismatch between the two parameters, doXSLTransform can be inserted to define the

transformation rule that is required to translate between the two parameters (Figure 62).

doXSLTransform will form part of the assign construct. For SAVAGE web services,

InvokeX3DFind returns a list of X3D names and the corresponding URLs.

doXSLTransform extracts the X3D URL from the first item of the list. The name of the

style sheet is transfromX3DURLList. The output is compatible (syntactically and

semantically glued) with the input of InvokeDESFind and InvokeX3DGet.

Partner link represents a partner web service. Initiate invoke, reply and receive

web service activities will create a partner link with the SAVAGE web services. For

103

example, InvokeX3DFind web service invoke activity creates a partner link with the

findX3DModel web method from X3DWebService.

The Sequence structured activity is basically a container that organizes predefined

activities and executes them in sequential order. For the SAVAGE web service composite

workflow, InvokeX3DFind will trigger InvokeX3DGet or InvokeDESFind in sequence

depending on the if condition. The Sequence construct is also used for InvokeDESFind

and invokeDESGet when the isFindGetDES condition is true. If isGetX3DModel is true,

then InvokeX3DGet will be triggered. If neither Boolean variable is true, the composite

workflow does nothing.

The composite workflow is terminated by a web service reply, coupled with the

result string to the initiated web service SAVAGEBpelX3DDESSeqLink.

NetBeans BPEL dynamically generates WSBPEL in XML as one configures the

composite workflow in the NetBeans user interface. The result of the generated WSBPEL

in XML is provided in Appendix B.2.

104

D. SAVAGE WS ORCHESTRATION AND ADAPTATION USING OWL-S

Figure 63. Protégé OWL-S editor can be used to describe semantic web services in
OWL-S.

The Protégé OWL-S plug-in (Figure 63) is written by SRI International. SRI is an

independent, nonprofit research institute conducting client-sponsored research and

development for government agencies, commercial businesses, foundations and other

organizations. SRI also brings its innovation to marketplace by licensing its intellectual

property and creating new ventures (http://www.sri.com/about).

105

Figure 64. Graph overview of SAVAGE OWL-S service profiles, processes and
groundings in Protégé.

 A Wizard in the plug-in is used to import SAVAGE web services WSDL into

OWL-S. OWL-S services, profiles, atomic processes for the web methods and WSDL

groundings are automatically established (See Figure 64). OWL-S is very expressive.

One can also add more descriptions on SAVAGE web services using the OWL-S plug-in,

such as service category, free text comments, etc.

106

Figure 65. SAVAGE OWL-S composite process constructed using the Protégé
OWL-S editor.

A similar composite workflow sequence that was done in WSBPEL is created in

OWL-S (Figure 65). The composite process is a sequence. It starts off by performing

X3DDESDecisionProcess, which has input parameters searchTerm, isGetX3D (Boolean

type, to indicate whether to retrieve a X3D model from the SAVAGE repository) and

isGetMatchingDES (Boolean type, to indicate whether to find and get the matching DES

behavior model given the X3D model URL). An if-then-else construct is performed after

FindX3DModelProcess. FindX3DModelProcess will invoke findDESModelProcess and

then getDESModelProcess if the isGetMatchingDES variable is true. If isGetX3D

variable is true, then getX3DModelProcess will be invoked instead. The result string will

be an X3D model or DES model.

107

The Protégé OWL-S plug-in dynamically generates OWL-S in XML as one

configures the composite workflow on the user interface. The result of the generated

OWL-S in XML is in Appendix B-1.

E. COMPARISON BETWEEN WSBPEL AND OWL-S

OWL-S is based on RDF, RDFS and OWL. Hence, the language is more

expressive. For example, OWL-S is able to import WSDL and the information forms part

of OWL-S. OWL-S also enables specific description using comments, service category,

service classification, service precondition and contact information in service profile. It

also allows an instance of the service result to have additional process description such as

in-condition and has-result expressions. However, the adaptation required to address the

syntactic and semantic mismatches between two parameters of atomic processes is not

addressed in OWL-S.

On the other hand, WSBPEL has the assign construct. When coupled with

doXSLTransform, this is able to capture rules required to link two web services and

overcome heterogeneity/mismatch problems when different services use different

vocabularies. In general, WSBPEL is more established in the area of the service

orchestration layer as compared to OWL-S. Hence, WSBPEL has more comprehensive

basic web services and structured activities to construct composite workflows. On the

other hand, WSBPEL is not as expressive as OWL-S. WSBPEL is equivalent only to the

service model class of OWL-S. WSBPEL is not able to describe web services profile,

WSDL grounding, etc. Hence, WSBPEL needs to work with other open standards such as

WSDL and UDDI for a complete SOA solution.

F. COMPARISON BETWEEN WSMO AND OWL-S

It is reported that most of the elements/constructs described in OWL-S can be

modeled in WSMO (Lara et al., 2004). OWL-S is more detailed in the area of service

orchestration (realized by the service model) and WSDL grounding as compared to

WSMO. However, OWL-S does not have the adaption capability to resolve mismatch

problems between two web methods. On the other hand, WSMO has a mediator

component. Similar to the assign element in WSBPEL, the purpose of the mediator in

108

WSMO is to resolve syntactic and semantic mismatch problems between goals,

ontologies or web services. The types of WSMO mediators are ggMediators (between

two goals), ooMediators (between two ontologies), wgMediators (between web service

and goal) and wwMediators (between two web services). The details of the conceptual

comparison between OWL-S and WSMO are summarized in Table 2.

Comparison aspect WSMO-Standard OWL-S

Purpose Focused goal, specific

application domains

Wide goal, does not focus on

concrete application domains

Principles Explicit conceptual work and

well-established principles

Not explicit, development

based set of tasks to be solved

and foundations inherited from

other research areas

Coupling Loose coupling, independent

definition of description

elements

Tighter coupling in several

aspects

Extensibility Extensible in every direction Limited extensibility, mainly

through OWL subclassing

Implementation and

business layers

Will be clearly separated in

WSMO-Full

Overlapped at some points eg.

use of the Resource concept

Registry Not dictated Not dictated

Requester needs and

service capabilities

Two different points of view,

modeled independently and

linked via wgMediators

Not separated, unified view in

the service profile

Functionality

description

Explicit and complete

description

Does not describe some

aspects of the functionality

Non-functional

properties

Pre-defined properties. Flexible

extension but not explicit

mechanism

Few pre-defined properties.

Explicit extension mechanism

but improvable flexibility

109

Orchestration Supports static and dynamic

composition, but under-defined

Limited dynamic composition,

completely defined

Grounding Multiple groundings, not pre-

defined grounding

Problems with multiple

groundings for atomic

processes, WSDL pre-defined

grounding

Mediation Scalable mediation between

loosely coupled elements

No mediation

Layering 3-layers (WSMO-Lite, WSMO-

Standard, WSMO-Full) covering

different complexity levels of

domain

No layering (layering inherited

from OWL, does not reflect

complexity of the application

domain)

Languages F-Logic for logical expressions.

Ontology language not imposed

Language for conditions not

defined. Ontology language

OWL.

Table 2. Conceptual comparison between OWL-S and WSMO (From Lara et al.,
2004).

G. WSAIF SOFTWARE AGENTS+DATA=WEB SERVICES INTEGRATION
ON THE FLY

WSAIF creates the object oriented abstraction between the component application

programming interface (API) and the various SOA related open standards. The WSAIF

Orchestration component integrates open standards WSBPEL, OWL-S and WSMO. It

also exposes a common set of APIs that is used to interoperate with the APIs from other

WSAIF components. For example, WSAIFAbsSequence is the abstraction to the

sequencing of web services activities. WSAIFOwlsSequence and WSAIFBpelSequence

extends WSAIFAbsSequence and implements the sequence structure representation for

OWL-S and WSBPEL. WSAIF Orchestration provides generic API that receives

information about the sequence activities. The user does not need to know about the

details of the modeling language, which can be OWL-S, WSBPEL or both.

110

The WSAIF Orchestration also contains WSAIFServiceAgentFactory with the

purpose of generating corresponding service agents for each partnering atomic web

method that forms the composite process. Each service agent will acquire information on

web methods such as choreography, semantics and various adaptation logics. Adaptation

logics are subsumed under the WSAIF Adaption component. Service agents will work

together and resolve local interoperability issues between web methods.

At the global level, the WSAIFWorkflowAgent will acquire knowledge about the

orchestrated workflow and coordinate with the service agents. WSAIF MatchmakeAgent

will work with service agents to explore, match services and attempt to construct possible

orchestrated workflows.

Data for composite workflow structures can be captured in OWL-S, WSBPEL or

WSMO. Data for adaptation logic can be captured in the assign element in WSBPEL or

the mediator component in WSMO. These data are represented as XML and XML is

portable. In order words, when these data are shared in the network, coupled with WSAIF

software agents facilitating dynamic integration of web services into WSA, web services

integration on the fly is made possible from the perspective of a new user.

Hence, WSAIF orchestration software agents will enable capabilities such as

automating WS invocation, WS workflow coordination, WS workflow monitoring and

service-to-service adaptation.

H. SUMMARY

This chapter described the orchestration scenario for SAVAGE web services. This

was followed by the realization of the orchestration scenario using OWL-S and

WSBPEL. A comparison between OWL-S and WSBPEL was made based on observation

of the orchestrated composite process. Comparison of OWL-S and WSMO was

summarized from open literature. The chapter concluded by elaborating on the approach

to integrate WSAIF software agents and data model to enable web services integration on

the fly.

111

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis described the motivation for WSAIF as an enabler for web services

integration on the fly. Its envisioned capabilities were covered in Chapter III. Chapter V

to VII covered the approach taken to explore the concept for the MOVES domain. Details

on the OO design of the SAVAGE web services were also discussed. The implementation

setup and test results for SAVAGE web services were covered in Chapter VI. The test

results were verified correct. Work showed that OWL-S, BPEL and WSMO are the

possible options to model the integration, orchestration and adaptation of web services in

a composite process. The comparison between the different modeling techniques was also

discussed. The thesis further explained how WSAIF software agents and modeling data

enable web services integration on the fly.

B. RECOMMENDATIONS FOR FUTURE WORK

Future work includes the survey, design and implementation of WSAIF

components. SAVAGE web services can be extended to include more web methods, such

as updating X3D and DES models. The logic for searching X3D and DES models can be

further enhanced by leveraging search engines such as Lucene. COTS search engines can

provide advanced search capabilities such as concept and pattern searches. SAVAGE

web services can incorporate a more complex and intelligent web method. The user does

need to know any specific input format or parameters. The intelligent web method takes

in a simple keyword. The web service receives the invocation request, which then

triggers the composite process modeled by WSBPEL or OWL-S. WSAIF facilitates the

execution of the composite process in the runtime environment. The result is parsed as

XML and will be returned with an associated schema. The schema will give clarity to

users on the format and meaning of the results.

It is also possible that the security architecture for XML Document-Centric

Security (Williams, 2008) can be incorporated into the WSAIF Security component.

112

Other tools and services such as a GeoServer Geographic Information System

(GIS) service can be integrated and discoverable as a web service so that WSAIF is able

to discover and match it with other services. Providing geographical information will

certainly add value to the WSAIF-composed business processes.

It will also be interesting to study the application of various AI planning

techniques on WSA and their effectiveness based on specific scenarios. The WSAIF

Agent component can incorporate suitable AI planning techniques that run on SOA-

related open standards. The WSAIF Agent then intelligently recommends and invokes the

most suitable AI planning technique with optimal parameters set based on the identified

scenario.

The Department of Defense Architecture Framework (DoDAF) defines a standard

way to organize an enterprise architecture (EA) or systems architecture into

complementary and consistent views. All major U.S. Government Department of Defense

(DoD) programs are required to adhere to the architecture views defined in DoDAF

(http://en.wikipedia.org/wiki/Department_of_Defense_Architecture_Framework). Hence,

the way forward is to incorporate DoDAF architecture views for the SAVAGE web

services.

Other work includes implementing the WSAIF framework to fully realize a

generic, flexible, scalable, usable and intelligent web service architecture. Future work

also includes the study and application of the WSAIF for global web-based simulation

and visualization, driven by net-centric tactical data. The WSAIF can also be applied and

tested in different domains.

113

APPENDIX A. SAVAGE WEB SERVICES SOURCE CODE

1. WSMETHODS CLASSES

WSMethods component contains Java classes X3DWebService.java and

DESWebService.java. These classes contain web methods findX3DModel, getX3DModel,

findDESModel and getDESModel. The web methods correspond to the four use cases for

SAVAGE web services.

a. X3DWebService.java

 1 package X3DWSMethod;
 2
 3 import WSController.X3DFindStrategy;
 4 import WSController.X3DGetStrategy;
 5 import WSController.WSSingleton;
 6 import WSController.WSStrategy;
 7 import WSModel.WSCatalogReader;
 8 import javax.jws.WebMethod;
 9 import javax.jws.WebParam;
10 import javax.jws.WebService;
11
12 /**
13 * This class defines the webmethods for SAVAGE X3D Webservice
14 * <p>
15 * Currently, 2 webmethods are developed, namely :
16 * findX3DModel and getX3DModel
17 *
18 * @author Leong, Hoe Wai
19 * @version %I%, %G%
20 * @since
21 */
22 @WebService()
23 public class X3DWebService {
24
25 /**
26 * Defines Web Service Operation findX3DModel
27 * The purpose of this webmethod is to find X3D URLs
28 * given a search term
29 *
30 * @param searchTerm search term in String
31 * @return List of X3D URLs
32 * @see
33 * @since
34 */
35 @WebMethod(operationName = "findX3DModel")
36 public String findX3DModel(@WebParam(name = "searchTerm")
37 String searchTerm) {
38 X3DFindStrategy findStrategy =
39 new X3DFindStrategy(searchTerm);

114

40 String strategyResult =
41 executeWebServiceOperation(findStrategy);
42 //TODO write your implementation code here:
43 return strategyResult;
44 }
45
46 /**
47 * Defines executeWebServiceOperation method.
48 * The method takes in an abstract WSStrategy.
49 * It execute the business operation base on the specific
50 * strategy passed in.
51 *
52 * @param WSStrategy Abstract Strategy
53 * @return Any return XML. Content depending on the
54 * specific strategy passed in
55 * @see
56 * @since
57 */
58 private String
59 executeWebServiceOperation(WSStrategy specificStrategy) {
60 return (specificStrategy.executeOperation());
61 }
62
63 /**
64 * Defines Web Service Operation getX3DModel
65 * The purpose of this webmethod is to get X3D XML
66 * from Savage File Server
67 *
68 * @param searchTerm search term in String
69 * @return List of X3D URLs
70 * @see
71 * @since
72 */
73 @WebMethod(operationName = "getX3DModel")
74 public String getX3DModel(@WebParam(name = "url")
75 String url) {
76 //TODO write your implementation code here:
77 X3DGetStrategy getStrategy = new X3DGetStrategy(url);
78 String strategyResult =
79 executeWebServiceOperation(getStrategy);
80 return strategyResult;
81 }
82 }

b. DESWebService.java

 1 package DESWSMethod;
 2
 3 import WSController.DESFindStrategy;
 4 import WSController.DESGetStrategy;
 5 import WSController.WSStrategy;
 6 import javax.jws.WebMethod;
 7 import javax.jws.WebParam;
 8 import javax.jws.WebService;
 9
10 /**

115

11 * This class defines the webmethods for SAVAGE DES Webservice
12 * <p>
13 * Currently, 2 webmethods are developed, namely :
14 * findDESModel and getDESModel
15 *
16 * @author Leong, Hoe Wai
17 * @version %I%, %G%
18 * @since
19 */
20
21 @WebService()
22 public class DESWebService {
23
24 /**
25 * Defines Web Service Operation findDESModel
26 * The purpose of this webmethod is to find associated DES
27 * behavior given X3D URL. The information is found in
28 * SavageCatalog, within SMAL
29 *
30 * @param x3dUrl The X3D URL
31 * @return List of associated DES URLs
32 * @see
33 * @since
34 */
35 @WebMethod(operationName = "findDESModel")
36 public String findDESModel(@WebParam(name = "x3dUrl")
37 String x3dUrl) {
38 //TODO write your implementation code here:
39 DESFindStrategy findStrategy = new DESFindStrategy(x3dUrl);
40 String strategyResult =
41 executeWebServiceOperation(findStrategy);
42 return strategyResult;
43 }
44
45 /**
46 * Defines Web Service Operation getDESModel
47 * The purpose of this webmethod is to get DES XML
48 * given DES URL. The information is found in Savage file server
49 *
50 * @param desUrl The DES URL
51 * @return DES XML
52 * @see
53 * @since
54 */
55 @WebMethod(operationName = "getDESModel")
56 public String getDESModel(@WebParam(name = "desUrl")
57 String desUrl) {
58 //TODO write your implementation code here:
59 DESGetStrategy getStrategy = new DESGetStrategy(desUrl);
60 String strategyResult =
61 executeWebServiceOperation(getStrategy);
62 return strategyResult;
63 }
64
65 /**
66 * Defines executeWebServiceOperation method.

116

67 * The method takes in an abstract WSStrategy.
68 * It execute the business operation base on the specific
69 * strategy passed in.
70 *
71 * @param WSStrategy Abstract Strategy
72 * @return Any return XML. Content depending on the
73 * specific strategy passed in
74 * @see
75 * @since
76 */
77 private String
78 executeWebServiceOperation(WSStrategy specificStrategy) {
79 return (specificStrategy.executeOperation());
80 }
81 }

2. WSCONTROLLER CLASSES

WSController component contains Java classes that realize the strategy for each

web method. WSSingleton.java creates and maintains the global static/single instance of

a particular class or model. WSUtility.java basically contains reusable utility operations

such as getContentFromFile.

a. WSStrategy.java

1 /*
 2 * To change this template, choose Tools | Templates
 3 * and open the template in the editor.
 4 */
 5
 6 package WSController;
 7
 8 /**
 9 * This is an abstract WSStrategy class
10 *
11 * @author Leong, Hoe Wai
12 * @version %I%, %G%
13 * @since
14 */
15 public abstract class WSStrategy {
16 /**
17 * Abstract method for executing web service strategy
18 *
19 * @param
20 * @return String Return XML depending on the specific
21 * strategy executed
22 * @see
23 * @since
24 */
25 public abstract String executeOperation();
26 }

117

b. X3DFindStrategy.java

 1 package WSController;
 2
 3 import WSModel.X3DFindResultEntity;
 4 import java.io.StringWriter;
 5 import java.util.HashMap;
 6 import java.util.StringTokenizer;
 7 import org.exolab.castor.xml.Marshaller;
 8 import org.w3c.dom.Attr;
 9 import org.w3c.dom.Document;
 10 import org.w3c.dom.NamedNodeMap;
 11 import org.w3c.dom.Node;
 12 import org.w3c.dom.NodeList;
 13
 14 /**
 15 * This class implements find X3D strategy
 16 *
 17 * @author Leong, Hoe Wai
 18 * @version %I%, %G%
 19 * @since
 20 */
 21 public class X3DFindStrategy extends WSStrategy {
 22 private String inputStr;
 23 private String outputStr;
 24 private HashMap<String,String> findResultSet;
 25
 26 public X3DFindStrategy(String input) {
 27 this.setInputStr(input);
 28 findResultSet = new HashMap<String,String>();
 29 }
 30
 31 public String getInputStr() {
 32 return inputStr;
 33 }
 34
 35 public void setInputStr(String inputStr) {
 36 this.inputStr = inputStr;
 37 }
 38
 39 public String getOutputStr() {
 40 return outputStr;
 41 }
 42
 43 public void setOutputStr(String outputStr) {
 44 this.outputStr = outputStr;
 45 }
 46
 47 public HashMap<String,String> getFindResultSet() {
 48 return findResultSet;
 49 }
 50
 51 public void
 52 setFindResultSet(HashMap<String,String> findResultSet) {
 53 this.findResultSet = findResultSet;
 54 }

118

 55
 56 /**
 57 * This method execute find strategy for X3D.
 58 * The method first get catalogDocument from WSSingleton
 59 * Then iterate through DOM to find matching search term
 60 * in SavageCatalog
 61 *
 62 * @param
 63 * @return String List of X3D URLs in XML
 64 * @see
 65 * @since
 66 */
 67 public String executeOperation() {
 68 System.out.println("X3DFindStrategy : start executing " +
 69 "X3DFindStrategy ... ");
 70 Document catalogDocument =WSSingleton.getCatalogDocument();
 71 iterateChild(catalogDocument);
 72 X3DFindResultEntity resultEntity =
 73 new X3DFindResultEntity(this.getFindResultSet());
 74 StringWriter strWrite = new StringWriter();
 75 try {
 76 Marshaller marshaller = new Marshaller(strWrite);
 77 marshaller.marshal(resultEntity);
 78 } catch (Exception ex) {
 79 System.out.println("Exception : "+ex);
 80 }
 81 System.out.println("X3DFindStrategy : end executing " +
 82 "X3DFindStrategy ... ");
 83 return strWrite.toString();
 84 }
 85
 86 /**
 87 * This method iterates DOM
 88 *
 89 * @param Node specific node of DOM
 90 * @return
 91 * @see
 92 * @since
 93 */
 94 private void iterateChild(Node node) {
 95 String nodeName;
 96 NodeList childList = node.getChildNodes();
 97 int childListLength = childList.getLength();
 98 for (int i=0; i<childListLength; i++) {
 99 Node currentNode = childList.item(i);
100 nodeName = currentNode.getNodeName();
101
102 if (nodeName.compareTo("Page")==0)
103 searchPage(currentNode);
104
105 iterateChild(currentNode);
106 }
107 }
108
109 /**
110 * This method search attribute url, name, description

119

111 *
112 * @param Node specific page node of DOM
113 * @return
114 * @see
115 * @since
116 */
117 private void searchPage(Node currentNode) {
118 boolean isFound = false;
119 String urlTemp="";
120 String nameTemp="";
121 NamedNodeMap attrs = currentNode.getAttributes();
122 int len = attrs.getLength();
123 for (int j=0; j<len; j++) {
124 Attr attr = (Attr)attrs.item(j);
125
126 if (attr.getNodeName().compareTo("url")==0)
127 urlTemp = attr.getNodeValue();
128
129 if (attr.getNodeName().compareTo("name")==0)
130 nameTemp = attr.getNodeValue();
131
132
133 if ((attr.getNodeName().compareTo("name")==0) &&
134 (attr.getNodeValue().compareTo(inputStr)==0))
135 isFound=true;
136
137 if ((attr.getNodeName().compareTo("title")==0) &&
138 (attr.getNodeValue().compareTo(inputStr)==0))
139 isFound=true;
140
141 if (attr.getNodeName().compareTo("description")==0)
142 if (searchDescription(attr.getNodeValue()))
143 isFound=true;
144 }
145
146 if (isFound)
147 this.getFindResultSet().put(nameTemp, urlTemp);
148 }
149
150 /**
151 * This method search string tokenize description and do
152 * keyword match with search term
153 *
154 * @param String description
155 * @return <code>true</code> if there is keyword match
156 * between search term and description
157 * <code>false</code> if there are no matches found.
158 * @see
159 * @since
160 */
161 private boolean searchDescription(String description) {
162 // code logic for searching description...
163 boolean isSearchDesc=false;
164 StringTokenizer descTokens =
165 new StringTokenizer(description," ");
166

120

167 while (descTokens.hasMoreTokens())
168 if (descTokens.nextToken().compareTo(inputStr)==0)
169 isSearchDesc=true;
170
171 return isSearchDesc;
172 }
173 }

c. X3DGetStrategy.java

1 package WSController;
 2
 3 import java.util.StringTokenizer;
 4
 5 /**
 6 * This class implements get X3D strategy
 7 *
 8 * @author Leong, Hoe Wai
 9 * @version %I%, %G%
10 * @since
11 */
12 public class X3DGetStrategy extends WSStrategy {
13
14 private String inputStr;
15
16 public X3DGetStrategy(String input) {
17 this.setInputStr(input);
18 }
19
20 public String getInputStr() {
21 return inputStr;
22 }
23
24 public void setInputStr(String inputStr) {
25 this.inputStr = inputStr;
26 }
27
28 /**
29 * This method execute get strategy for X3D.
30 * The method finds common directory "Savage"
31 * and retrive X3D XML from file server base on the file path
32 *
33 * @param
34 * @return String X3D XML
35 * @see
36 * @since
37 */
38 public String executeOperation() {
39 System.out.println("X3DGetStrategy : start executing " +
40 "X3DGetStrategy ... ");
41 String beginFilePath = WSSingleton.getSavagePath();
42 StringTokenizer token =
43 new StringTokenizer(this.getInputStr(),"/");
44
45 while (token.hasMoreTokens())
46 if (token.nextToken().compareTo("Savage")==0)

121

47 break;
48
49 String remainFilePath = "";
50 while (token.hasMoreTokens())
51 remainFilePath=
52 remainFilePath.concat("/"+token.nextToken());
53
54 String fileLocation = beginFilePath+remainFilePath;
55 String xmlStr = WSUtility.getContentsFromFile(fileLocation);
56
57 System.out.println("X3DGetStrategy : end executing " +
58 "X3DGetStrategy ... ");
59 return xmlStr;
60 }
61 }

d. DESFindStrategy.java

 1 package WSController;
 2
 3 import WSModel.DESFindResultEntity;
 4 import java.io.StringWriter;
 5 import java.util.HashMap;
 6 import org.exolab.castor.xml.Marshaller;
 7 import org.w3c.dom.Attr;
 8 import org.w3c.dom.Document;
 9 import org.w3c.dom.NamedNodeMap;
 10 import org.w3c.dom.Node;
 11 import org.w3c.dom.NodeList;
 12
 13 /**
 14 * This class implements find DES strategy
 15 *
 16 * @author Leong, Hoe Wai
 17 * @version %I%, %G%
 18 * @since
 19 */
 20 public class DESFindStrategy extends WSStrategy {
 21 private String inputStr;
 22 private String outputStr;
 23 private HashMap<String,String> findResultSet;
 24
 25 public DESFindStrategy(String input) {
 26 this.setInputStr(input);
 27 findResultSet = new HashMap<String,String>();
 28 }
 29
 30 public String getInputStr() {
 31 return inputStr;
 32 }
 33
 34 public void setInputStr(String inputStr) {
 35 this.inputStr = inputStr;
 36 }
 37
 38 public String getOutputStr() {

122

 39 return outputStr;
 40 }
 41
 42 public void setOutputStr(String outputStr) {
 43 this.outputStr = outputStr;
 44 }
 45
 46 public HashMap<String, String> getFindResultSet() {
 47 return findResultSet;
 48 }
 49
 50 public void setFindResultSet
 51 (HashMap<String, String> findResultSet) {
 52 this.findResultSet = findResultSet;
 53 }
 54
 55 /**
 56 * This method execute find strategy for DES.
 57 * The method first get catalogDocument from WSSingleton
 58 * Then iterate through DOM to find matching X3D url in
 59 * SavageCatalog
 60 *
 61 * @param
 62 * @return String List of DES URLs in XML
 63 * @see
 64 * @since
 65 */
 66 public String executeOperation() {
 67 System.out.println("DESFindStrategy : start executing " +
 68 "DESFindStrategy ... ");
 69 Document catalogDocument =WSSingleton.getCatalogDocument();
 70 iterateChild(catalogDocument);
 71 DESFindResultEntity resultEntity =
 72 new DESFindResultEntity(this.getFindResultSet());
 73 StringWriter strWrite = new StringWriter();
 74 try {
 75 Marshaller marshaller = new Marshaller(strWrite);
 76 marshaller.marshal(resultEntity);
 77 } catch (Exception ex) {
 78 System.out.println("Exception : "+ex);
 79 }
 80 return strWrite.toString();
 81 }
 82
 83 /**
 84 * This method iterates DOM
 85 *
 86 * @param Node specific node of DOM
 87 * @return
 88 * @see
 89 * @since
 90 */
 91 private void iterateChild(Node node) {
 92 String nodeName;
 93 NodeList childList = node.getChildNodes();
 94 int childListLength = childList.getLength();

123

 95 for (int i=0; i<childListLength; i++) {
 96 Node currentNode = childList.item(i);
 97 nodeName = currentNode.getNodeName();
 98
 99 if (nodeName.compareTo("Page")==0)
100 if (isX3D(currentNode))
101 extractBehavior(currentNode);
102
103 iterateChild(currentNode);
104 }
105 }
106
107 /**
108 * This method compares node url attr with url input from
109 * webmethod to see if they are the same
110 *
111 * @param Node specific node of DOM
112 * @return <code>true</code> if node url attr is the same as
113 * url input <code>false</code> if the 2 urls differ
114 * @see
115 * @since
116 */
117 private boolean isX3D(Node node) {
118 boolean isFound=false;
119 NamedNodeMap attrs = node.getAttributes();
120 int len = attrs.getLength();
121 for (int j=0; j<len; j++) {
122 Attr attr = (Attr)attrs.item(j);
123 if (attr.getNodeName().compareTo("url")==0)
124 if (attr.getNodeValue().compareTo(inputStr)==0)
125 isFound=true;
126 }
127 return isFound;
128 }
129
130 /**
131 * This method extract agent name and DES url.
132 *
133 * @param Node specific node in DOM
134 * @return
135 * @see
136 * @since
137 */
138 private void extractBehavior(Node node) {
139 String nodeName="";
140 String agentTemp="";
141 NodeList childList = node.getChildNodes();
142 int childListLength = childList.getLength();
143 for (int i=0; i<childListLength; i++) {
144 Node currentNode = childList.item(i);
145 nodeName = currentNode.getNodeName();
146 if (nodeName.compareTo("SimulationAgent")==0) {
147 NamedNodeMap attrs = currentNode.getAttributes();
148 int len = attrs.getLength();
149 for (int j=0; j<len; j++) {
150 Attr attr = (Attr)attrs.item(j);

124

151 if (attr.getNodeName().compareTo("agent")==0)
152 agentTemp=attr.getNodeValue();
153 if (attr.getNodeName().compareTo("url")==0)
154 this.getFindResultSet().put(agentTemp,
155 attr.getNodeValue());
156 }
157 }
158 extractBehavior(currentNode);
159 }
160 }
161 }

e. DESGetStrategy.java

1 package WSController;
 2
 3 import java.util.StringTokenizer;
 4
 5 /**
 6 * This class implements get DES strategy
 7 *
 8 * @author Leong, Hoe Wai
 9 * @version %I%, %G%
10 * @since
11 */
12 public class DESGetStrategy extends WSStrategy {
13 private String inputStr;
14
15 public DESGetStrategy(String input) {
16 this.setInputStr(input);
17 }
18
19 public String getInputStr() {
20 return inputStr;
21 }
22
23 public void setInputStr(String inputStr) {
24 this.inputStr = inputStr;
25 }
26
27 /**
28 * This method execute get strategy for DES.
29 * The method finds common directory "ViskitModels"
30 * and retrive DES XML from file server base on the file path
31 *
32 * @param
33 * @return String DES XML
34 * @see
35 * @since
36 */
37 public String executeOperation() {
38 System.out.println("DESGetStrategy : start executing " +
39 "DESGetStrategy ... ");
40 String beginFilePath = WSSingleton.getViskitModelPath();
41 StringTokenizer token =
42 new StringTokenizer(this.getInputStr(),"/");

125

43
44 while (token.hasMoreTokens())
45 if (token.nextToken().compareTo("ViskitModels")==0)
46 break;
47
48 String remainFilePath = "";
49 while (token.hasMoreTokens())
50 remainFilePath=
51 remainFilePath.concat("/"+token.nextToken());
52
53 String fileLocation = beginFilePath+remainFilePath;
54 String xmlStr = WSUtility.getContentsFromFile(fileLocation);
55
56 System.out.println("DESGetStrategy : end executing " +
57 "DESGetStrategy ... ");
58 return xmlStr;
59 }
60 }

f. WSSingleton.java

 1 package WSController;
 2
 3 import WSModel.WSCatalogReader;
 4 import java.io.FileInputStream;
 5 import java.io.IOException;
 6 import java.io.InputStream;
 7 import java.util.Properties;
 8 import org.w3c.dom.Document;
 9
 10 /**
 11 * This class implements Singleton
 12 * holding static instances of catalogDocument
 13 * and static reference to catalogFilePath,catalogFileName,
 14 * savagePath, viskitModelPath information
 15 *
 16 * @author Leong, Hoe Wai
 17 * @version %I%, %G%
 18 * @since
 19 */
 20 public class WSSingleton {
 21 private static Document catalogDocument;
 22 private static String PROPERTIES_FILE_NAME =
 23 "SavageWebServices.properties";
 24 private static Properties configuration;
 25
 26 public WSSingleton() {
 27
 28 }
 29
 30 public static String getCatalogFilePath() {
 31 if (configuration==null) {
 32 InputStream in = WSSingleton.class.getResourceAsStream
 33 (PROPERTIES_FILE_NAME);
 34 configuration = new Properties();
 35 try {

126

 36 configuration.load(in);
 37 } catch (IOException e) {
 38 System.out.println("Exception at " +
 39 "getCatalogFilePath : "+e);
 40 }
 41 }
 42 return (String)configuration.get("catalogFilePath");
 43 }
 44
 45 public static Document getCatalogDocument() {
 46 if (catalogDocument==null) {
 47 WSCatalogReader catalogReader = new WSCatalogReader
 48 (WSSingleton.getCatalogFilePath()+
 49 WSSingleton.getCatalogFileName());
 50 catalogReader.savageCatalogConstruct();
 51 WSSingleton.setCatalogDocument
 52 (catalogReader.getDocument());
 53 }
 54 return catalogDocument;
 55 }
 56
 57 public static void setCatalogDocument
 58 (Document catalogDocument) {
 59 WSSingleton.catalogDocument = catalogDocument;
 60 }
 61
 62 public static String getCatalogFileName() {
 63 if (configuration==null) {
 64 InputStream in = WSSingleton.class.getResourceAsStream
 65 (PROPERTIES_FILE_NAME);
 66 configuration = new Properties();
 67 try {
 68 configuration.load(in);
 69 } catch (IOException e) {
 70 System.out.println("Exception at " +
 71 "getCatalogFileName : "+e);
 72 }
 73 }
 74 return (String)configuration.get("catalogFileName");
 75 }
 76
 77 public static String getSavagePath() {
 78 if (configuration==null) {
 79 InputStream in = WSSingleton.class.getResourceAsStream
 80 (PROPERTIES_FILE_NAME);
 81 configuration = new Properties();
 82 try {
 83 configuration.load(in);
 84 } catch (IOException e) {
 85 System.out.println("Exception at " +
 86 "getSavagePath : "+e);
 87 }
 88 }
 89 return (String)configuration.get("savagePath");
 90 }
 91
 92 public static String getViskitModelPath() {

127

 93 if (configuration==null) {
 94 InputStream in = WSSingleton.class.getResourceAsStream
 95 (PROPERTIES_FILE_NAME);
 96 configuration = new Properties();
 97 try {
 98 configuration.load(in);
 99 } catch (IOException e) {
100 System.out.println("Exception at " +
101 "getViskitModelPath : "+e);
102 }
103 }
104 return (String)configuration.get("viskitModelPath");
105 }
106 }

g. WSUtility.java

 1 package WSController;
 2
 3 import java.io.BufferedReader;
 4 import java.io.File;
 5 import java.io.FileReader;
 6 import java.io.IOException;
 7
 8 /**
 9 * WS Utility class
10 *
11 * @author Leong, Hoe Wai
12 * @version %I%, %G%
13 * @since
14 */
15 public class WSUtility {
16
17 /**
18 * Fetch the entire contents of a text file, and return it
19 * in a String. This style of implementation does not throw
20 * Exceptions to the caller.
21 *
22 * @param fileStr is a file which already exists and can be read
23 * @return String Return content of file
24 * @see
25 * @since
26 */
27 public static String getContentsFromFile(String fileStr) {
28 StringBuilder contents = new StringBuilder();
29 File aFile = new File(fileStr);
30 try {
31 BufferedReader input = new BufferedReader
32 (new FileReader(aFile));
33 try {
34 String line = null;
35 while ((line = input.readLine()) != null){
36 contents.append(line);
37 contents.append(System.getProperty("line.separator"));
38 }
39 }

128

40 finally {
41 input.close();
42 }
43 }
44 catch (IOException ex){
45 ex.printStackTrace();
46 }
47
48 return contents.toString();
49 }
50
51 }

3. WSMODEL CLASSES

WSModel component contains Java classes that read and construct the SAVAGE

catalog in DOM. The instances of X3DFindResultEntity.java and

DESFindResultEntity.java are used to encapsulate web methods return results before they

are parsed as XML.

a. WSCatalogReader.java

 1 package WSModel;
 2
 3
 4 import java.io.File;
 5 import java.io.FileNotFoundException;
 6 import javax.xml.parsers.DocumentBuilder;
 7 import javax.xml.parsers.DocumentBuilderFactory;
 8 import javax.xml.parsers.FactoryConfigurationError;
 9 import javax.xml.parsers.ParserConfigurationException;
10 import org.w3c.dom.Document;
11
12 /**
13 * Savage Catalog reader
14 *
15 * @author Leong, Hoe Wai
16 * @version %I%, %G%
17 * @since
18 */
19 public class WSCatalogReader {
20 private Document document;
21 private String catalogFileName;
22
23 public WSCatalogReader(String catalogFile)
24 {
25 this.setCatalogFileName(catalogFile);
26 }
27
28 /**
29 * This method read SavageCatalog file and construct DOM
30 *

129

31 * @param
32 * @return
33 * @see
34 * @since
35 */
36 public void savageCatalogConstruct()
37 {
38 System.out.println("X3DCatalogBuilder : Savage Catalog " +
39 "construct started ... ");
40 try
41 {
42 DocumentBuilderFactory factory =
43 DocumentBuilderFactory.newInstance();
44 DocumentBuilder builder = factory.newDocumentBuilder();
45
46 if (builder.isNamespaceAware()) {
47 System.out.println("X3DCatalogBuilder is " +
48 "namespace aware");
49 } else {
50 System.out.println("X3DCatalogBuilder is not " +
51 "namespace aware");
52 }
53
54 if (builder.isValidating()) {
55 System.out.println("X3DCatalogBuilder is " +
56 "validation capable");
57 } else {
58 System.out.println("X3DCatalogBuilder is not " +
59 "validation capable");
60 }
61
62 this.setDocument(builder.parse(new File
63 (this.getCatalogFileName())));
64
65 } catch (ParserConfigurationException pce) {
66 System.out.println("ParserConfigurationException " +
67 "occured:"+pce);
68 } catch (FactoryConfigurationError fce) {
69 System.out.println("FactoryConfigurationError " +
70 "occured:"+fce);
71 } catch (FileNotFoundException fnfe) {
72 System.out.println("FileNotFoundException occured:"
73 +fnfe);
74 } catch (Exception ex) {
75 System.out.println("Other exception occured: "+ex);
76 }
77 System.out.println("X3DCatalogBuilder : Savage Catalog " +
78 "construct completed ... ");
79 }
80
81 public String getCatalogFileName() {
82 return catalogFileName;
83 }
84
85 public void setCatalogFileName(String catalogFileName) {
86 this.catalogFileName = catalogFileName;

130

87 }
88
89 public Document getDocument() {
90 return document;
91 }
92
93 public void setDocument(Document document) {
94 this.document = document;
95 }
96
97 }

b. X3DFindResultEntity.java

 1 /*
 2 * To change this template, choose Tools | Templates
 3 * and open the template in the editor.
 4 */
 5
 6 package WSModel;
 7
 8 import java.util.HashMap;
 9
10 /**
11 *
12 * @author Leong, Hoe Wai
13 */
14 public class X3DFindResultEntity {
15 private HashMap<String,String> resultSet;
16
17 public X3DFindResultEntity(HashMap<String,String> map) {
18 this.setResultSet(map);
19 }
20
21 public HashMap<String,String> getResultSet() {
22 return resultSet;
23 }
24
25 public void setResultSet(HashMap<String,String> resultSet) {
26 this.resultSet = resultSet;
27 }
28 }

c. DESFindResultEntity.java

 1 package WSModel;
 2
 3 import java.util.HashMap;
 4
 5 /**
 6 * Entity class for DESFindStrategy result list of DES agents
 7 * and urls
 8 *
 9 * @author Leong, Hoe Wai
10 * @version %I%, %G%
11 * @since

131

12 */
13 public class DESFindResultEntity {
14 private HashMap<String,String> resultSet;
15
16 public DESFindResultEntity(HashMap<String,String> map) {
17 this.setResultSet(map);
18 }
19
20 public HashMap<String,String> getResultSet() {
21 return resultSet;
22 }
23
24 public void setResultSet
25 (HashMap<String,String> resultSet) {
26 this.resultSet = resultSet;
27 }
28 }

d. Savage Catalog

Savage Catalog URL is found in

https://savage.nps.edu/Savage/ContentCatalogSavage.xml

4. GENERATED RESOURCES

Generated resources are Java classes, WSDL and schemas auto-generated by

JAX-WS. The generated Java classes correspond to the four web methods. JAXB is used

to parse the Java classes into WSDL and associated schemas.

a. FindX3DModel.java

 1
 2 package X3DWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "findX3DModel", namespace =
11 "http://X3DWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "findX3DModel", namespace =
14 "http://X3DWSMethod/")
15 public class FindX3DModel {
16
17 @XmlElement(name = "searchTerm", namespace = "")
18 private String searchTerm;
19
20 /**
21 *

132

22 * @return
23 * returns String
24 */
25 public String getSearchTerm() {
26 return this.searchTerm;
27 }
28
29 /**
30 *
31 * @param searchTerm
32 * the value for the searchTerm property
33 */
34 public void setSearchTerm(String searchTerm) {
35 this.searchTerm = searchTerm;
36 }
37
38 }

b. FindX3DModelResponse.java

 1
 2 package X3DWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "findX3DModelResponse",
11 namespace = "http://X3DWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "findX3DModelResponse",
14 namespace = "http://X3DWSMethod/")
15 public class FindX3DModelResponse {
16
17 @XmlElement(name = "return", namespace = "")
18 private String _return;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getReturn() {
26 return this._return;
27 }
28
29 /**
30 *
31 * @param _return
32 * the value for the _return property
33 */
34 public void setReturn(String _return) {
35 this._return = _return;
36 }

133

37
38 }

c. GetX3DModel.java

 1
 2 package X3DWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "getX3DModel",
11 namespace = "http://X3DWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "getX3DModel",
14 namespace = "http://X3DWSMethod/")
15 public class GetX3DModel {
16
17 @XmlElement(name = "url", namespace = "")
18 private String url;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getUrl() {
26 return this.url;
27 }
28
29 /**
30 *
31 * @param url
32 * the value for the url property
33 */
34 public void setUrl(String url) {
35 this.url = url;
36 }
37
38 }

d. GetX3DModelResponse.java

 1
 2 package X3DWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "getX3DModelResponse", namespace =

134

11 "http://X3DWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "getX3DModelResponse", namespace =
14 "http://X3DWSMethod/")
15 public class GetX3DModelResponse {
16
17 @XmlElement(name = "return", namespace = "")
18 private String _return;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getReturn() {
26 return this._return;
27 }
28
29 /**
30 *
31 * @param _return
32 * the value for the _return property
33 */
34 public void setReturn(String _return) {
35 this._return = _return;
36 }
37
38 }

e. FindDESModel.java

 1
 2 package DESWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "findDESModel", namespace =
11 "http://DESWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "findDESModel", namespace =
14 "http://DESWSMethod/")
15 public class FindDESModel {
16
17 @XmlElement(name = "x3dUrl", namespace = "")
18 private String x3DUrl;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getX3DUrl() {

135

26 return this.x3DUrl;
27 }
28
29 /**
30 *
31 * @param x3DUrl
32 * the value for the x3DUrl property
33 */
34 public void setX3DUrl(String x3DUrl) {
35 this.x3DUrl = x3DUrl;
36 }
37
38 }

f. FindDESModelResponse.java

 1
 2 package DESWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "findDESModelResponse", namespace =
11 "http://DESWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "findDESModelResponse", namespace =
14 "http://DESWSMethod/")
15 public class FindDESModelResponse {
16
17 @XmlElement(name = "return", namespace = "")
18 private String _return;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getReturn() {
26 return this._return;
27 }
28
29 /**
30 *
31 * @param _return
32 * the value for the _return property
33 */
34 public void setReturn(String _return) {
35 this._return = _return;
36 }
37
38 }

136

g. GetDESModel.java

 1
 2 package DESWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "getDESModel", namespace =
11 "http://DESWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "getDESModel", namespace =
14 "http://DESWSMethod/")
15 public class GetDESModel {
16
17 @XmlElement(name = "desUrl", namespace = "")
18 private String desUrl;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getDesUrl() {
26 return this.desUrl;
27 }
28
29 /**
30 *
31 * @param desUrl
32 * the value for the desUrl property
33 */
34 public void setDesUrl(String desUrl) {
35 this.desUrl = desUrl;
36 }
37
38 }

h. GetDESModelResponse.java

 1
 2 package DESWSMethod.jaxws;
 3
 4 import javax.xml.bind.annotation.XmlAccessType;
 5 import javax.xml.bind.annotation.XmlAccessorType;
 6 import javax.xml.bind.annotation.XmlElement;
 7 import javax.xml.bind.annotation.XmlRootElement;
 8 import javax.xml.bind.annotation.XmlType;
 9
10 @XmlRootElement(name = "getDESModelResponse", namespace =
11 "http://DESWSMethod/")
12 @XmlAccessorType(XmlAccessType.FIELD)
13 @XmlType(name = "getDESModelResponse", namespace =

137

14 "http://DESWSMethod/")
15 public class GetDESModelResponse {
16
17 @XmlElement(name = "return", namespace = "")
18 private String _return;
19
20 /**
21 *
22 * @return
23 * returns String
24 */
25 public String getReturn() {
26 return this._return;
27 }
28
29 /**
30 *
31 * @param _return
32 * the value for the _return property
33 */
34 public void setReturn(String _return) {
35 this._return = _return;
36 }
37
38 }

i. X3DWebServiceService.wsdl

 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net.
 3 RI's version is JAX-WS RI 2.1.2-b05-RC1. -->
 4 <definitions targetNamespace="http://X3DWSMethod/"
 5 name="X3DWebServiceService"
 6 xmlns="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:tns="http://X3DWSMethod/"
 8 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 9 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
10 <types>
11 <xsd:schema>
12 <xsd:import namespace="http://X3DWSMethod/"
13 schemaLocation="X3DWebServiceService_schema1.xsd"/>
14 </xsd:schema>
15 </types>
16 <message name="findX3DModel">
17 <part name="parameters" element="tns:findX3DModel"/>
18 </message>
19 <message name="findX3DModelResponse">
20 <part name="parameters" element="tns:findX3DModelResponse"/>
21 </message>
22 <message name="getX3DModel">
23 <part name="parameters" element="tns:getX3DModel"/>
24 </message>
25 <message name="getX3DModelResponse">
26 <part name="parameters" element="tns:getX3DModelResponse"/>
27 </message>
28 <portType name="X3DWebService">

138

29 <operation name="findX3DModel">
30 <input message="tns:findX3DModel"/>
31 <output message="tns:findX3DModelResponse"/>
32 </operation>
33 <operation name="getX3DModel">
34 <input message="tns:getX3DModel"/>
35 <output message="tns:getX3DModelResponse"/>
36 </operation>
37 </portType>
38 <binding name="X3DWebServicePortBinding" type="tns:X3DWebService">
39 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
40 style="document"/>
41 <operation name="findX3DModel">
42 <soap:operation soapAction=""/>
43 <input>
44 <soap:body use="literal"/>
45 </input>
46 <output>
47 <soap:body use="literal"/>
48 </output>
49 </operation>
50 <operation name="getX3DModel">
51 <soap:operation soapAction=""/>
52 <input>
53 <soap:body use="literal"/>
54 </input>
55 <output>
56 <soap:body use="literal"/>
57 </output>
58 </operation>
59 </binding>
60 <service name="X3DWebServiceService">
61 <port name="X3DWebServicePort"
62 binding="tns:X3DWebServicePortBinding">
63 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
64 </port>
65 </service>
66 </definitions>

j. X3DWebServiceService_schema1.xsd

 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <xs:schema version="1.0" targetNamespace="http://X3DWSMethod/"
 3 xmlns:tns="http://X3DWSMethod/"
 4 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 5
 6 <xs:element name="findX3DModel" type="tns:findX3DModel"/>
 7
 8 <xs:element name="findX3DModelResponse"
 9 type="tns:findX3DModelResponse"/>
10
11 <xs:element name="getX3DModel" type="tns:getX3DModel"/>
12
13 <xs:element name="getX3DModelResponse"
14 type="tns:getX3DModelResponse"/>
15

139

16 <xs:complexType name="getX3DModel">
17 <xs:sequence>
18 <xs:element name="url" type="xs:string" minOccurs="0"/>
19 </xs:sequence>
20 </xs:complexType>
21
22 <xs:complexType name="getX3DModelResponse">
23 <xs:sequence>
24 <xs:element name="return" type="xs:string" minOccurs="0"/>
25 </xs:sequence>
26 </xs:complexType>
27
28 <xs:complexType name="findX3DModel">
29 <xs:sequence>
30 <xs:element name="searchTerm" type="xs:string" minOccurs="0"/>
31 </xs:sequence>
32 </xs:complexType>
33
34 <xs:complexType name="findX3DModelResponse">
35 <xs:sequence>
36 <xs:element name="return" type="xs:string" minOccurs="0"/>
37 </xs:sequence>
38 </xs:complexType>
39 </xs:schema>

k. DESWebServiceService.wsdl

 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net.
 3 RI's version is JAX-WS RI 2.1.2-b05-RC1. -->
 4 <definitions targetNamespace="http://DESWSMethod/"
 5 name="DESWebServiceService"
 6 xmlns="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:tns="http://DESWSMethod/"
 8 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 9 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
10 <types>
11 <xsd:schema>
12 <xsd:import namespace="http://DESWSMethod/"
13 schemaLocation="DESWebServiceService_schema1.xsd"/>
14 </xsd:schema>
15 </types>
16 <message name="findDESModel">
17 <part name="parameters" element="tns:findDESModel"/>
18 </message>
19 <message name="findDESModelResponse">
20 <part name="parameters" element="tns:findDESModelResponse"/>
21 </message>
22 <message name="getDESModel">
23 <part name="parameters" element="tns:getDESModel"/>
24 </message>
25 <message name="getDESModelResponse">
26 <part name="parameters" element="tns:getDESModelResponse"/>
27 </message>
28 <portType name="DESWebService">
29 <operation name="findDESModel">

140

30 <input message="tns:findDESModel"/>
31 <output message="tns:findDESModelResponse"/>
32 </operation>
33 <operation name="getDESModel">
34 <input message="tns:getDESModel"/>
35 <output message="tns:getDESModelResponse"/>
36 </operation>
37 </portType>
38 <binding name="DESWebServicePortBinding" type="tns:DESWebService">
39 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
40 style="document"/>
41 <operation name="findDESModel">
42 <soap:operation soapAction=""/>
43 <input>
44 <soap:body use="literal"/>
45 </input>
46 <output>
47 <soap:body use="literal"/>
48 </output>
49 </operation>
50 <operation name="getDESModel">
51 <soap:operation soapAction=""/>
52 <input>
53 <soap:body use="literal"/>
54 </input>
55 <output>
56 <soap:body use="literal"/>
57 </output>
58 </operation>
59 </binding>
60 <service name="DESWebServiceService">
61 <port name="DESWebServicePort"
62 binding="tns:DESWebServicePortBinding">
63 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
64 </port>
65 </service>
66 </definitions>

l. DESWebServiceService_schema1.xsd

 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <xs:schema version="1.0" targetNamespace="http://DESWSMethod/"
 3 xmlns:tns="http://DESWSMethod/"
 4 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 5
 6 <xs:element name="findDESModel" type="tns:findDESModel"/>
 7
 8 <xs:element name="findDESModelResponse"
 9 type="tns:findDESModelResponse"/>
10
11 <xs:element name="getDESModel" type="tns:getDESModel"/>
12
13 <xs:element name="getDESModelResponse"
14 type="tns:getDESModelResponse"/>
15
16 <xs:complexType name="getDESModel">

141

17 <xs:sequence>
18 <xs:element name="desUrl" type="xs:string" minOccurs="0"/>
19 </xs:sequence>
20 </xs:complexType>
21
22 <xs:complexType name="getDESModelResponse">
23 <xs:sequence>
24 <xs:element name="return" type="xs:string" minOccurs="0"/>
25 </xs:sequence>
26 </xs:complexType>
27
28 <xs:complexType name="findDESModel">
29 <xs:sequence>
30 <xs:element name="x3dUrl" type="xs:string" minOccurs="0"/>
31 </xs:sequence>
32 </xs:complexType>
33
34 <xs:complexType name="findDESModelResponse">
35 <xs:sequence>
36 <xs:element name="return" type="xs:string" minOccurs="0"/>
37 </xs:sequence>
38 </xs:complexType>
39 </xs:schema>

5. JSP CLIENT

JSP client is developed to demonstrate client invocation of SAVAGE web

services (aka use cases). It is also used to test and verify that the results returned by

SAVAGE web services are correct.

a. index.jsp

 1 <%--
 2 Document : index
 3 Created on : Oct 13, 2008, 10:22:14 PM
 4 Author : Leong, Hoe Wai
 5 --%>
 6
 7 <%@page contentType="text/html" pageEncoding="UTF-8"%>
 8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 9 "http://www.w3.org/TR/html4/loose.dtd">
10
11 <html>
12 <head>
13 <meta http-equiv="Content-Type" content="text/html;
14 charset=UTF-8">
15 <title>JSP Page</title>
16 </head>
17 <body>
18 <h2>Welcome to SAVAGE Web Services Test Page</h2>
19
20 <form action="SavageWSClientServlet.jsp">
21 <input type="radio" name="webmethod" value="findX3DModel">

142

22 findX3DModel
23

24 <input type="radio" name="webmethod" value="getX3DModel">
25 getX3DModel
26

27 <input type="radio" name="webmethod" value="findDESModel">
28 findDESModel
29

30 <input type="radio" name="webmethod" value="getDESModel">
31 getDESModel
32

33

34 <input type="text" name="input">
35 <input type="submit" value="Invoke Web Service">
36 </form>
37 </body>
38 </html>

b. SavageWSClientServlet.jsp

 1 <%--
 2 Document : SavageWSClientServlet
 3 Created on : Oct 13, 2008, 11:42:29 PM
 4 Author : Leong, Hoe Wai
 5 --%>
 6
 7 <%@page contentType="text/html" pageEncoding="UTF-8"%>
 8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 9 "http://www.w3.org/TR/html4/loose.dtd">
 10
 11
 12 <html>
 13 <head>
 14 <meta http-equiv="Content-Type" content="text/html;
 15 charset=UTF-8">
 16 <title>Savage Web Services Test</title>
 17 </head>
 18 <body>
 19
 20 <%
 21 java.util.Properties configuration =
 22 new java.util.Properties();
 23 try {
 24 configuration.load(new java.io.FileInputStream
 25 ("C:/Users/Lenovo/Documents/MDTS/NPS/Thesis/" +
 26 "src/SavageWSClientWebAppDevTest/build/web/" +
 27 "loaddir.properties"));
 28 } catch (Exception ex) {
 29
 30 }
 31 if (request.getParameter("webmethod").compareTo
 32 ("findX3DModel")==0)
 33 try {
 34 x3dwsmethod.X3DWebServiceService service =
 35 new x3dwsmethod.X3DWebServiceService();
 36 x3dwsmethod.X3DWebService port =

143

 37 service.getX3DWebServicePort();
 38 java.lang.String searchTerm =
 39 request.getParameter("input");
 40 java.lang.String result =
 41 port.findX3DModel(searchTerm);
 42 // Create file
 43 java.io.FileWriter fstream =
 44 new java.io.FileWriter(configuration.get
 45 ("buildWebFilePath")+
 46 "findX3DModelResult.xml");
 47 java.io.BufferedWriter output =
 48 new java.io.BufferedWriter(fstream);
 49 output.write(result);
 50 //Close the output stream
 51 output.close();
 52 out.println
 53 ("<h1><A HREF=" +
 54 "\"findX3DModelResult.xml\" target=\"_blank\">" +
 55 "Savage Web Service Invocation Result</h1>");
 56 } catch (Exception ex) {
 57 System.out.println("EXCEPTION@findX3DModel : "+ex);
 58 }
 59 else if (request.getParameter("webmethod").
 60 compareTo("getX3DModel")==0)
 61 try {
 62 x3dwsmethod.X3DWebServiceService service =
 63 new x3dwsmethod.X3DWebServiceService();
 64 x3dwsmethod.X3DWebService port =
 65 service.getX3DWebServicePort();
 66 java.lang.String url =
 67 request.getParameter("input");
 68 java.lang.String result = port.getX3DModel(url);
 69 // Create file
 70 java.io.FileWriter fstream =
 71 new java.io.FileWriter(configuration.get
 72 ("buildWebFilePath")+
 73 "getX3DModelResult.x3d");
 74 java.io.BufferedWriter output =
 75 new java.io.BufferedWriter(fstream);
 76 output.write(result);
 77 //Close the output stream
 78 output.close();
 79 out.println
 80 ("<h1><A HREF=\"getX3DModelResult.x3d\" target=" +
 81 "\"_blank\">Savage Web Service Invocation Result" +
 82 "</h1>");
 83 } catch (Exception ex) {
 84 System.out.println("EXCEPTION@getX3DModel : "+ex);
 85 }
 86 else if (request.getParameter("webmethod").compareTo
 87 ("findDESModel")==0)
 88 try {
 89 deswsmethod.DESWebServiceService service =
 90 new deswsmethod.DESWebServiceService();
 91 deswsmethod.DESWebService port =
 92 service.getDESWebServicePort();

144

 93 java.lang.String x3DUrl =
 94 request.getParameter("input");
 95 java.lang.String result = port.findDESModel(x3DUrl);
 96 // Create file
 97 java.io.FileWriter fstream = new java.io.FileWriter
 98 (configuration.get("buildWebFilePath")+
 99 "findDESModelResult.xml");
100 java.io.BufferedWriter output =
101 new java.io.BufferedWriter(fstream);
102 output.write(result);
103 //Close the output stream
104 output.close();
105 out.println
106 ("<h1><A HREF=\"findDESModelResult.xml\" target=" +
107 "\"_blank\">Savage Web Service Invocation Result" +
108 "</h1>");
109 } catch (Exception ex) {
110 System.out.println("EXCEPTION@findDESModel : "+ex);
111 }
112 else if (request.getParameter("webmethod").
113 compareTo("getDESModel")==0)
114 try {
115 deswsmethod.DESWebServiceService service =
116 new deswsmethod.DESWebServiceService();
117 deswsmethod.DESWebService port =
118 service.getDESWebServicePort();
119 java.lang.String desUrl =
120 request.getParameter("input");
121 java.lang.String result =
122 port.getDESModel(desUrl);
123 // Create file
124 java.io.FileWriter fstream =
125 new java.io.FileWriter(configuration.get
126 ("buildWebFilePath")+
127 "getDESModelResult.xml");
128 java.io.BufferedWriter output =
129 new java.io.BufferedWriter(fstream);
130 output.write(result);
131 //Close the output stream
132 output.close();
133 out.println
134 ("<h1><A HREF=\"getDESModelResult.xml\" target=" +
135 "\"_blank\">Savage Web Service Invocation Result" +
136 "</h1>");
137 } catch (Exception ex) {
138 System.out.println
139 ("EXCEPTION@getDESModel : "+ex);
140 }
141 %>
142 <h2><A HREF=
143 "http://localhost:9090/SavageWSClientWebAppDevTest/">
144 Return to Query Page</h2>
145 </body>
146 </html>

145

APPENDIX B. MEDIATION FOR SAVAGE WEB SERVICES

1. OWL-S FOR SAVAGE COMPOSITE PROCESS

The SAVAGE composite process for OWL-S is illustrated in Chapter VI, section

D. The services, service profiles, service groundings, atomic processes and composite

process are created in Protégé OWL-S editor. The OWL-S description in XML is

dynamically generated by Protégé. SavageOWLSSemanticWS.owl is the description for

SAVAGE composite process. Each atomic process has its associated OWL description.

a. SavageOWLSSematicWS.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:service=
 4 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 5 xmlns:process=
 6 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 7 xmlns="http://www.owl-ontologies.com/Ontology1220745514.owl#"
 8 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 9 xmlns:list=
 10 "http://www.daml.org/services/owl-s/1.2/generic/
 11 ObjectList.owl#"
 12 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 13 xmlns:wi1="http://www.example.org/owls/X3DDESDecision.owl"
 14 xmlns:expr="http://www.daml.org/services/owl-s/1.2/
 15 generic/Expression.owl#"
 16 xmlns:owl="http://www.w3.org/2002/07/owl#"
 17 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 18 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 19 xmlns:grounding=
 20 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 21 xmlns:profile=
 22 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 23 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 24 xmlns:time="http://www.isi.edu/~pan/damltime/time-entry.owl#"
 25 xml:base="http://www.owl-ontologies.com/Ontology1220745514.owl">
 26 <owl:Ontology rdf:about="">
 27 <owl:imports rdf:resource=
 28 "http://www.example.org/owls/X3DDESDecision.owl"/>
 29 <owl:imports rdf:resource=
 30 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 31 <owl:imports rdf:resource=
 32 "http://www.example.org/owls/findX3DModel.owl"/>
 33 <owl:imports rdf:resource=
 34 "http://www.w3.org/2003/11/swrl"/>
 35 <owl:imports rdf:resource=
 36 "http://www.example.org/owls/getDESModel.owl"/>
 37 <owl:imports rdf:resource=
 38 "http://www.w3.org/2003/11/swrlb"/>

146

 39 <owl:imports rdf:resource=
 40 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 41 <owl:imports rdf:resource=
 42 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 43 <owl:imports rdf:resource=
 44 "http://www.example.org/owls/findDESModel.owl"/>
 45 <owl:imports rdf:resource=
 46 "http://www.example.org/owls/getX3DModel.owl"/>
 47 </owl:Ontology>
 48 <process:Perform rdf:ID="findX3DModelProcess">
 49 <process:process rdf:resource="http://www.example.org/owls/
 50 findX3DModel.owl#findX3DModelProcess"/>
 51 <process:hasDataFrom>
 52 <process:InputBinding rdf:ID="InputBinding_4">
 53 <process:valueSource>
 54 <process:ValueOf rdf:ID="ValueOf_5">
 55 <process:fromProcess>
 56 <process:Perform rdf:ID="X3DDESDecisionProcess">
 57 <process:process rdf:resource
 58 ="http://www.example.org/owls/
 59 X3DDESDecision.owl#X3DDESDecisionProcess"/>
 60 </process:Perform>
 61 </process:fromProcess>
 62 <process:theVar rdf:resource=
 63 "http://www.example.org/owls/
 64 X3DDESDecision.owl#X3DDESDecisionResult"/>
 65 </process:ValueOf>
 66 </process:valueSource>
 67 <process:toParam rdf:resource=
 68 "http://www.example.org/owls/
 69 findX3DModel.owl#searchTerm"/>
 70 </process:InputBinding>
 71 </process:hasDataFrom>
 72 </process:Perform>
 73 <process:Perform rdf:ID="findDESModelProcess">
 74 <process:process rdf:resource=
 75 "http://www.example.org/owls/
 76 findDESModel.owl#findDESModelProcess"/>
 77 <process:hasDataFrom>
 78 <process:InputBinding rdf:ID="InputBinding_23">
 79 <process:valueSource>
 80 <process:ValueOf rdf:ID="ValueOf_24">
 81 <process:fromProcess rdf:resource=
 82 "#findX3DModelProcess"/>
 83 <process:theVar rdf:resource=
 84 "http://www.example.org/owls/
 85 findX3DModel.owl#return"/>
 86 </process:ValueOf>
 87 </process:valueSource>
 88 <process:toParam rdf:resource=
 89 "http://www.example.org/owls/
 90 findDESModel.owl#x3dUrl"/>
 91 </process:InputBinding>
 92 </process:hasDataFrom>
 93 </process:Perform>
 94 <process:InputBinding rdf:ID="InputBinding_16">
 95 <process:toParam rdf:resource=

147

 96 "http://www.example.org/owls/getDESModel.owl#desUrl"/>
 97 <process:valueSource>
 98 <process:ValueOf rdf:ID="ValueOf_17">
 99 <process:fromProcess rdf:resource="#findDESModelProcess"/>
100 <process:theVar rdf:resource=
101 "http://www.example.org/owls/findDESModel.owl#return"/>
102 </process:ValueOf>
103 </process:valueSource>
104 </process:InputBinding>
105 <process:Perform rdf:ID="PerformGetX3D">
106 <process:process rdf:resource=
107 "http://www.example.org/owls/
108 getX3DModel.owl#getX3DModelProcess"/>
109 <process:hasDataFrom>
110 <process:InputBinding rdf:ID="InputBinding_10">
111 <process:valueSource>
112 <process:ValueOf rdf:ID="ValueOf_11">
113 <process:theVar rdf:resource=
114 "http://www.example.org/owls/
115 findX3DModel.owl#return"/>
116 <process:fromProcess>
117 <process:Perform rdf:ID="PerformFindX3D">
118 <process:process rdf:resource=
119 "http://www.example.org/owls/
120 findX3DModel.owl#findX3DModelProcess"/>
121 </process:Perform>
122 </process:fromProcess>
123 </process:ValueOf>
124 </process:valueSource>
125 <process:toParam rdf:resource=
126 "http://www.example.org/owls/getX3DModel.owl#url"/>
127 </process:InputBinding>
128 </process:hasDataFrom>
129 </process:Perform>
130 <process:ControlConstructList rdf:ID="ControlConstructList_5">
131 <list:rest>
132 <process:ControlConstructList rdf:ID=
133 "ControlConstructList_16">
134 <list:first>
135 <process:If-Then-Else rdf:ID="If-Then-Else_15">
136 <process:ifCondition>
137 <expr:Condition rdf:ID="test"/>
138 </process:ifCondition>
139 </process:If-Then-Else>
140 </list:first>
141 <list:rest>
142 <process:ControlConstructList rdf:ID=
143 "ControlConstructList_8">
144 <list:rest rdf:resource=
145 "http://www.daml.org/services/owl-s/1.2/
146 generic/ObjectList.owl#nil"/>
147 <list:first rdf:resource="#PerformGetX3D"/>
148 </process:ControlConstructList>
149 </list:rest>
150 </process:ControlConstructList>
151 </list:rest>
152 <list:first rdf:resource="#PerformFindX3D"/>

148

153 </process:ControlConstructList>
154 <process:Sequence rdf:ID="Sequence_11">
155 <process:components>
156 <process:ControlConstructList rdf:ID=
157 "ControlConstructList_13">
158 <list:first rdf:resource="#findDESModelProcess"/>
159 <list:rest>
160 <process:ControlConstructList rdf:ID=
161 "ControlConstructList_15">
162 <list:first>
163 <process:Perform rdf:ID="getDESModelProcess">
164 <process:hasDataFrom rdf:resource=
165 "#InputBinding_16"/>
166 <process:process rdf:resource=
167 "http://www.example.org/owls/
168 getDESModel.owl#getDESModelProcess"/>
169 </process:Perform>
170 </list:first>
171 <list:rest rdf:resource=
172 "http://www.daml.org/services/owl-s/1.2/generic/
173 ObjectList.owl#nil"/>
174 </process:ControlConstructList>
175 </list:rest>
176 </process:ControlConstructList>
177 </process:components>
178 </process:Sequence>
179 <process:Sequence rdf:ID="Sequence_18">
180 <process:components>
181 <process:ControlConstructList rdf:ID=
182 "ControlConstructList_20">
183 <list:rest rdf:resource=
184 "http://www.daml.org/services/owl-s/1.2/generic/
185 ObjectList.owl#nil"/>
186 <list:first>
187 <process:Perform rdf:ID="getX3DModelProcess">
188 <process:process rdf:resource=
189 "http://www.example.org/owls/
190 getX3DModel.owl#getX3DModelProcess"/>
191 <process:hasDataFrom>
192 <process:InputBinding rdf:ID="InputBinding_21">
193 <process:valueSource>
194 <process:ValueOf rdf:ID="ValueOf_22">
195 <process:fromProcess rdf:resource="
196 #findX3DModelProcess"/>
197 <process:theVar rdf:resource=
198 "http://www.example.org/owls/
199 findX3DModel.owl#return"/>
200 </process:ValueOf>
201 </process:valueSource>
202 <process:toParam rdf:resource=
203 "http://www.example.org/owls/
204 getX3DModel.owl#url"/>
205 </process:InputBinding>
206 </process:hasDataFrom>
207 </process:Perform>
208 </list:first>
209 </process:ControlConstructList>

149

210 </process:components>
211 </process:Sequence>
212 <process:ControlConstructList rdf:ID="ControlConstructList_3">
213 <list:first rdf:resource="#X3DDESDecisionProcess"/>
214 <list:rest>
215 <process:ControlConstructList rdf:ID=
216 "ControlConstructList_4">
217 <list:rest>
218 <process:ControlConstructList rdf:ID=
219 "ControlConstructList_10">
220 <list:first>
221 <process:If-Then-Else rdf:ID="If-Then-Else_6">
222 <process:ifCondition>
223 <expr:Condition rdf:ID="isFindMatchDES">
224 <profile:hasParameter rdf:resource=
225 "http://www.example.org/owls/
226 X3DDESDecision.owl#isGetMatchingDES"/>
227 </expr:Condition>
228 </process:ifCondition>
229 <process:then rdf:resource="#Sequence_11"/>
230 <process:else rdf:resource="#Sequence_18"/>
231 </process:If-Then-Else>
232 </list:first>
233 <list:rest rdf:resource=
234 "http://www.daml.org/services/owl-s/1.2/generic/
235 ObjectList.owl#nil"/>
236 </process:ControlConstructList>
237 </list:rest>
238 <list:first rdf:resource="#findX3DModelProcess"/>
239 </process:ControlConstructList>
240 </list:rest>
241 </process:ControlConstructList>
242 <rdf:Description rdf:about=
243 "http://www.example.org/owls/
244 getX3DModel.owl#getX3DModelProfile">
245 <profile:serviceCategory>
246 <profile:ServiceCategory rdf:ID=
247 "ServiceCategory_getX3DModelProfile">
248 <profile:code rdf:datatype=
249 "http://www.w3.org/2001/XMLSchema#byte"
250 >1</profile:code>
251 <profile:taxonomy rdf:datatype=
252 "http://www.w3.org/2001/XMLSchema#string"
253 >get</profile:taxonomy>
254 <profile:value rdf:datatype=
255 "http://www.w3.org/2001/XMLSchema#string"
256 >X3D</profile:value>
257 <profile:categoryName rdf:datatype=
258 "http://www.w3.org/2001/XMLSchema#string"
259 >Savage Webservices</profile:categoryName>
260 </profile:ServiceCategory>
261 </profile:serviceCategory>
262 </rdf:Description>
263 <profile:ServiceCategory rdf:ID="ServiceCategory_25"/>
264 <profile:ServiceParameter rdf:ID="ServiceParameter_26"/>
265 <process:Sequence rdf:ID="Sequence_2">
266 <process:components rdf:resource="#ControlConstructList_3"/>

150

267 </process:Sequence>
268 <process:CompositeProcess rdf:ID="Savage_X3D_DES_Composite">
269 <rdfs:comment rdf:datatype=
270 "http://www.w3.org/2001/XMLSchema#string"
271 >This composite process defines the workflow composition
272 between findX3DModel, getX3DModel, findDESModel and
273 getDESModel webmethods.</rdfs:comment>
274 <process:composedOf rdf:resource="#Sequence_2"/>
275 </process:CompositeProcess>
276 <process:Result rdf:ID="Result_27"/>
277 <process:InputBinding rdf:ID="InputBinding_9"/>
278 <profile:ServiceCategory rdf:ID="ServiceCategory_1"/>
279 <expr:LogicLanguage rdf:ID="LogicLanguage_9"/>
280 <rdf:Description rdf:about="http://www.example.org/owls/
281 getX3DModel.owl#getX3DModelService">
282 <rdfs:comment rdf:datatype=
283 "http://www.w3.org/2001/XMLSchema#string"
284 ></rdfs:comment>
285 </rdf:Description>
286 <process:Sequence rdf:ID="Sequence_3">
287 <process:components rdf:resource="#ControlConstructList_5"/>
288 </process:Sequence>
289 </rdf:RDF>
290
291 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
292 http://protege.stanford.edu -->

b. X3DDESDecision.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 4 xmlns:j.0=
 5 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 6 xmlns:owl="http://www.w3.org/2002/07/owl#"
 7 xmlns:j.1=
 8 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 9 xmlns:j.2=
 10 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 11 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 12 xmlns:j.3=
 13 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 14 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 15 xmlns:p5="http://www.example.org/owls/X3DDESDecision.owl#"
 16 xml:base="http://www.example.org/owls/X3DDESDecision.owl">
 17 <owl:Ontology rdf:about="">
 18 <owl:imports rdf:resource=
 19 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 20 <owl:imports rdf:resource=
 21 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 22 <owl:imports rdf:resource=
 23 "http://www.daml.org/services/owl-s/1.2/Process.owl"/>
 24 <owl:imports rdf:resource=
 25 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 26 </owl:Ontology>
 27 <j.1:Output rdf:ID="X3DDESDecisionResult">

151

 28 <j.1:parameterType rdf:datatype=
 29 "http://www.w3.org/2001/XMLSchema#anyURI"
 30 >http://www.w3.org/2001/XMLSchema#string</j.1:parameterType>
 31 <rdfs:label rdf:datatype=
 32 "http://www.w3.org/2001/XMLSchema#string"
 33 >X3DDESDecisionResult</rdfs:label>
 34 </j.1:Output>
 35 <j.0:Service rdf:ID="X3DDESDecisionService">
 36 <j.0:presents>
 37 <j.3:Profile rdf:ID="X3DDESDecisionProfile">
 38 <j.0:presentedBy rdf:resource="#X3DDESDecisionService"/>
 39 <j.3:hasInput>
 40 <j.1:Input rdf:ID="isGetMatchingDES">
 41 <rdfs:label rdf:datatype=
 42 "http://www.w3.org/2001/XMLSchema#string"
 43 >isGetMatchingDES</rdfs:label>
 44 <j.1:parameterType rdf:datatype=
 45 "http://www.w3.org/2001/XMLSchema#anyURI"
 46 >http://www.w3.org/2001/XMLSchema#boolean
 47 </j.1:parameterType>
 48 </j.1:Input>
 49 </j.3:hasInput>
 50 <j.3:hasInput>
 51 <j.1:Input rdf:ID="isGetX3D">
 52 <j.1:parameterType rdf:datatype=
 53 "http://www.w3.org/2001/XMLSchema#anyURI"
 54 >http://www.w3.org/2001/XMLSchema#boolean
 55 </j.1:parameterType>
 56 <rdfs:label rdf:datatype=
 57 "http://www.w3.org/2001/XMLSchema#string"
 58 >isGetX3D</rdfs:label>
 59 </j.1:Input>
 60 </j.3:hasInput>
 61 <j.3:hasInput>
 62 <j.1:Input rdf:ID="searchString">
 63 <rdfs:label rdf:datatype=
 64 "http://www.w3.org/2001/XMLSchema#string"
 65 >searchString</rdfs:label>
 66 <j.1:parameterType rdf:datatype=
 67 "http://www.w3.org/2001/XMLSchema#anyURI"
 68 >http://www.w3.org/2001/XMLSchema#string
 69 </j.1:parameterType>
 70 </j.1:Input>
 71 </j.3:hasInput>
 72 <j.3:textDescription rdf:datatype=
 73 "http://www.w3.org/2001/XMLSchema#string"
 74 >Auto generated from
 75 http://localhost:8080/SavageX3DDESComposite.asmx?WSDL
 76 </j.3:textDescription>
 77 <j.3:serviceName rdf:datatype=
 78 "http://www.w3.org/2001/XMLSchema#string"
 79 >X3DDESDecision</j.3:serviceName>
 80 <j.3:hasOutput rdf:resource="#X3DDESDecisionResult"/>
 81 </j.3:Profile>
 82 </j.0:presents>
 83 <j.0:supports>
 84 <j.2:WsdlGrounding rdf:ID="X3DDESDecisionGrounding">

152

 85 <j.2:hasAtomicProcessGrounding>
 86 <j.2:WsdlAtomicProcessGrounding rdf:ID=
 87 "X3DDESDecisionAtomicProcessGrounding">
 88 <j.2:owlsProcess>
 89 <j.1:AtomicProcess rdf:ID="X3DDESDecisionProcess">
 90 <j.1:hasInput rdf:resource="#isGetMatchingDES"/>
 91 <j.1:hasInput rdf:resource="#isGetX3D"/>
 92 <j.1:hasInput rdf:resource="#searchString"/>
 93 <rdfs:label rdf:datatype=
 94 "http://www.w3.org/2001/XMLSchema#string"
 95 >X3DDESDecisionProcess</rdfs:label>
 96 <j.1:hasOutput rdf:resource=
 97 "#X3DDESDecisionResult"/>
 98 <j.0:describes rdf:resource=
 99 "#X3DDESDecisionService"/>
100 </j.1:AtomicProcess>
101 </j.2:owlsProcess>
102 <j.2:wsdlInput>
103 <j.2:WsdlInputMessageMap>
104 <j.2:owlsParameter rdf:resource="#searchString"/>
105 <j.2:wsdlMessagePart rdf:datatype=
106 "http://www.w3.org/2001/XMLSchema#anyURI"
107 >http://localhost:8080/SavageX3DDESComposite.asmx?
108 WSDL#searchString</j.2:wsdlMessagePart>
109 </j.2:WsdlInputMessageMap>
110 </j.2:wsdlInput>
111 <j.2:wsdlOperation>
112 <j.2:WsdlOperationRef>
113 <j.2:operation rdf:datatype=
114 "http://www.w3.org/2001/XMLSchema#anyURI"
115 >http://localhost:8080/SavageX3DDESComposite.asmx?
116 WSDL#X3DDESDecision</j.2:operation>
117 <j.2:portType rdf:datatype=
118 "http://www.w3.org/2001/XMLSchema#anyURI"
119 >http://localhost:8080/SavageX3DDESComposite.asmx?
120 WSDL#Service1Soap</j.2:portType>
121 </j.2:WsdlOperationRef>
122 </j.2:wsdlOperation>
123 <j.2:wsdlInput>
124 <j.2:WsdlInputMessageMap>
125 <j.2:wsdlMessagePart rdf:datatype=
126 "http://www.w3.org/2001/XMLSchema#anyURI"
127 >http://localhost:8080/SavageX3DDESComposite.asmx?
128 WSDL#isGetX3D</j.2:wsdlMessagePart>
129 <j.2:owlsParameter rdf:resource="#isGetX3D"/>
130 </j.2:WsdlInputMessageMap>
131 </j.2:wsdlInput>
132 <j.2:wsdlOutputMessage rdf:datatype=
133 "http://www.w3.org/2001/XMLSchema#anyURI"
134 >http://X3DDESComposite.org/#X3DDESDecisionSoapOut
135 </j.2:wsdlOutputMessage>
136 <j.2:wsdlDocument rdf:datatype=
137 "http://www.w3.org/2001/XMLSchema#anyURI"
138 >http://localhost:8080/SavageX3DDESComposite.asmx?WSDL
139 </j.2:wsdlDocument>
140 <j.2:wsdlInput>
141 <j.2:WsdlInputMessageMap>

153

142 <j.2:wsdlMessagePart rdf:datatype=
143 "http://www.w3.org/2001/XMLSchema#anyURI"
144 >http://localhost:8080/SavageX3DDESComposite.asmx?
145 WSDL#isGetMatchingDES</j.2:wsdlMessagePart>
146 <j.2:owlsParameter rdf:resource=
147 "#isGetMatchingDES"/>
148 </j.2:WsdlInputMessageMap>
149 </j.2:wsdlInput>
150 <j.2:wsdlInputMessage rdf:datatype=
151 "http://www.w3.org/2001/XMLSchema#anyURI"
152 >http://X3DDESComposite.org/#X3DDESDecisionSoapIn
153 </j.2:wsdlInputMessage>
154 <j.2:wsdlOutput>
155 <j.2:WsdlOutputMessageMap>
156 <j.2:wsdlMessagePart rdf:datatype=
157 "http://www.w3.org/2001/XMLSchema#anyURI"
158 >http://localhost:8080/SavageX3DDESComposite.asmx?
159 WSDL#X3DDESDecisionResult</j.2:wsdlMessagePart>
160 <j.2:owlsParameter rdf:resource=
161 "#X3DDESDecisionResult"/>
162 </j.2:WsdlOutputMessageMap>
163 </j.2:wsdlOutput>
164 </j.2:WsdlAtomicProcessGrounding>
165 </j.2:hasAtomicProcessGrounding>
166 <j.0:supportedBy rdf:resource="#X3DDESDecisionService"/>
167 </j.2:WsdlGrounding>
168 </j.0:supports>
169 <j.0:describedBy rdf:resource="#X3DDESDecisionProcess"/>
170 </j.0:Service>
171 </rdf:RDF>
172
173 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
174 http://protege.stanford.edu -->

c. findX3DModel.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 4 xmlns:p2="http://www.example.org/owls/findX3DModel.owl#"
 5 xmlns:j.0=
 6 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 7 xmlns:owl="http://www.w3.org/2002/07/owl#"
 8 xmlns:j.1=
 9 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 10 xmlns:j.2=
 11 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 12 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 13 xmlns:j.3=
 14 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 16 xml:base="http://www.example.org/owls/findX3DModel.owl">
 17 <owl:Ontology rdf:about="">
 18 <owl:imports rdf:resource=
 19 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 20 <owl:imports rdf:resource=

154

 21 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 22 <owl:imports rdf:resource=
 23 "http://www.daml.org/services/owl-s/1.2/Process.owl"/>
 24 <owl:imports rdf:resource=
 25 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 26 </owl:Ontology>
 27 <j.2:WsdlAtomicProcessGrounding rdf:ID=
 28 "findX3DModelAtomicProcessGrounding">
 29 <j.2:wsdlDocument rdf:datatype=
 30 "http://www.w3.org/2001/XMLSchema#anyURI"
 31 >http://localhost:9090/SAVAGEWebServices/X3DWebService?
 32 wsdl</j.2:wsdlDocument>
 33 <j.2:owlsProcess>
 34 <j.1:AtomicProcess rdf:ID=
 35 "findX3DModelProcess">
 36 <j.1:hasInput>
 37 <j.1:Input rdf:ID="searchTerm">
 38 <rdfs:label rdf:datatype=
 39 "http://www.w3.org/2001/XMLSchema#string"
 40 >searchTerm</rdfs:label>
 41 <j.1:parameterType rdf:datatype=
 42 "http://www.w3.org/2001/XMLSchema#anyURI"
 43 >http://www.w3.org/2001/XMLSchema#string
 44 </j.1:parameterType>
 45 </j.1:Input>
 46 </j.1:hasInput>
 47 <j.1:hasOutput>
 48 <j.1:Output rdf:ID="return">
 49 <rdfs:label rdf:datatype=
 50 "http://www.w3.org/2001/XMLSchema#string"
 51 >return</rdfs:label>
 52 <j.1:parameterType rdf:datatype=
 53 "http://www.w3.org/2001/XMLSchema#anyURI"
 54 >http://www.w3.org/2001/XMLSchema#string
 55 </j.1:parameterType>
 56 </j.1:Output>
 57 </j.1:hasOutput>
 58 <rdfs:label rdf:datatype=
 59 "http://www.w3.org/2001/XMLSchema#string"
 60 >findX3DModelProcess</rdfs:label>
 61 <j.0:describes>
 62 <j.0:Service rdf:ID="findX3DModelService">
 63 <j.0:presents>
 64 <j.3:Profile rdf:ID="findX3DModelProfile">
 65 <j.0:presentedBy rdf:resource=
 66 "#findX3DModelService"/>
 67 <j.3:serviceName rdf:datatype=
 68 "http://www.w3.org/2001/XMLSchema#string"
 69 >findX3DModel</j.3:serviceName>
 70 <j.3:textDescription rdf:datatype=
 71 "http://www.w3.org/2001/XMLSchema#string"
 72 >Auto generated from
 73 http://localhost:9090/SAVAGEWebServices/
 74 X3DWebService?wsdl</j.3:textDescription>
 75 <j.3:hasInput rdf:resource="#searchTerm"/>
 76 <j.3:hasOutput rdf:resource="#return"/>
 77 </j.3:Profile>

155

 78 </j.0:presents>
 79 <j.0:supports>
 80 <j.2:WsdlGrounding rdf:ID="findX3DModelGrounding">
 81 <j.0:supportedBy rdf:resource=
 82 "#findX3DModelService"/>
 83 <j.2:hasAtomicProcessGrounding rdf:resource=
 84 "#findX3DModelAtomicProcessGrounding"/>
 85 </j.2:WsdlGrounding>
 86 </j.0:supports>
 87 <j.0:describedBy rdf:resource=
 88 "#findX3DModelProcess"/>
 89 </j.0:Service>
 90 </j.0:describes>
 91 </j.1:AtomicProcess>
 92 </j.2:owlsProcess>
 93 <j.2:wsdlInputMessage rdf:datatype=
 94 "http://www.w3.org/2001/XMLSchema#anyURI"
 95 >http://X3DWSMethod/#findX3DModel</j.2:wsdlInputMessage>
 96 <j.2:wsdlOperation>
 97 <j.2:WsdlOperationRef>
 98 <j.2:operation rdf:datatype=
 99 "http://www.w3.org/2001/XMLSchema#anyURI"
100 >http://localhost:9090/SAVAGEWebServices/X3DWebService?
101 wsdl#findX3DModel</j.2:operation>
102 <j.2:portType rdf:datatype=
103 "http://www.w3.org/2001/XMLSchema#anyURI"
104 >http://localhost:9090/SAVAGEWebServices/X3DWebService?
105 wsdl#X3DWebServicePort</j.2:portType>
106 </j.2:WsdlOperationRef>
107 </j.2:wsdlOperation>
108 <j.2:wsdlOutputMessage rdf:datatype=
109 "http://www.w3.org/2001/XMLSchema#anyURI"
110 >http://X3DWSMethod/#findX3DModelResponse
111 </j.2:wsdlOutputMessage>
112 <j.2:wsdlInput>
113 <j.2:WsdlInputMessageMap>
114 <j.2:owlsParameter rdf:resource="#searchTerm"/>
115 <j.2:wsdlMessagePart rdf:datatype=
116 "http://www.w3.org/2001/XMLSchema#anyURI"
117 >http://localhost:9090/SAVAGEWebServices/X3DWebService?
118 wsdl#searchTerm</j.2:wsdlMessagePart>
119 </j.2:WsdlInputMessageMap>
120 </j.2:wsdlInput>
121 <j.2:wsdlOutput>
122 <j.2:WsdlOutputMessageMap>
123 <j.2:wsdlMessagePart rdf:datatype=
124 "http://www.w3.org/2001/XMLSchema#anyURI"
125 >http://localhost:9090/SAVAGEWebServices/X3DWebService?
126 wsdl#return</j.2:wsdlMessagePart>
127 <j.2:owlsParameter rdf:resource="#return"/>
128 </j.2:WsdlOutputMessageMap>
129 </j.2:wsdlOutput>
130 </j.2:WsdlAtomicProcessGrounding>
131 </rdf:RDF>
132
133 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
134 http://protege.stanford.edu -->

156

d. getX3DModel.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 4 xmlns:j.0=
 5 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 6 xmlns:p1="http://www.example.org/owls/getX3DModel.owl#"
 7 xmlns:owl="http://www.w3.org/2002/07/owl#"
 8 xmlns:j.1=
 9 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 10 xmlns:j.2=
 11 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 12 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 13 xmlns:j.3=
 14 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 16 xml:base="http://www.example.org/owls/getX3DModel.owl">
 17 <owl:Ontology rdf:about="">
 18 <owl:imports rdf:resource=
 19 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 20 <owl:imports rdf:resource=
 21 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 22 <owl:imports rdf:resource=
 23 "http://www.daml.org/services/owl-s/1.2/Process.owl"/>
 24 <owl:imports rdf:resource=
 25 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 26 </owl:Ontology>
 27 <j.0:Service rdf:ID="getX3DModelService">
 28 <j.0:supports>
 29 <j.2:WsdlGrounding rdf:ID="getX3DModelGrounding">
 30 <j.0:supportedBy rdf:resource="#getX3DModelService"/>
 31 <j.2:hasAtomicProcessGrounding>
 32 <j.2:WsdlAtomicProcessGrounding rdf:ID=
 33 "getX3DModelAtomicProcessGrounding">
 34 <j.2:wsdlOutputMessage rdf:datatype=
 35 "http://www.w3.org/2001/XMLSchema#anyURI"
 36 >http://X3DWSMethod/#getX3DModelResponse
 37 </j.2:wsdlOutputMessage>
 38 <j.2:wsdlInput>
 39 <j.2:WsdlInputMessageMap>
 40 <j.2:wsdlMessagePart rdf:datatype=
 41 "http://www.w3.org/2001/XMLSchema#anyURI"
 42 >http://localhost:9090/SAVAGEWebServices/
 43 X3DWebService?wsdl#url</j.2:wsdlMessagePart>
 44 <j.2:owlsParameter>
 45 <j.1:Input rdf:ID="url">
 46 <j.1:parameterType rdf:datatype=
 47 "http://www.w3.org/2001/XMLSchema#anyURI"
 48 >http://www.w3.org/2001/XMLSchema#string
 49 </j.1:parameterType>
 50 <rdfs:label rdf:datatype=
 51 "http://www.w3.org/2001/XMLSchema#string"
 52 >url</rdfs:label>
 53 </j.1:Input>
 54 </j.2:owlsParameter>

157

 55 </j.2:WsdlInputMessageMap>
 56 </j.2:wsdlInput>
 57 <j.2:wsdlOutput>
 58 <j.2:WsdlOutputMessageMap>
 59 <j.2:wsdlMessagePart rdf:datatype=
 60 "http://www.w3.org/2001/XMLSchema#anyURI"
 61 >http://localhost:9090/SAVAGEWebServices/
 62 X3DWebService?wsdl#return</j.2:wsdlMessagePart>
 63 <j.2:owlsParameter>
 64 <j.1:Output rdf:ID="return">
 65 <rdfs:label rdf:datatype=
 66 "http://www.w3.org/2001/XMLSchema#string"
 67 >return</rdfs:label>
 68 <j.1:parameterType rdf:datatype=
 69 "http://www.w3.org/2001/XMLSchema#anyURI"
 70 >http://www.w3.org/2001/XMLSchema#string
 71 </j.1:parameterType>
 72 </j.1:Output>
 73 </j.2:owlsParameter>
 74 </j.2:WsdlOutputMessageMap>
 75 </j.2:wsdlOutput>
 76 <j.2:wsdlDocument rdf:datatype=
 77 "http://www.w3.org/2001/XMLSchema#anyURI"
 78 >http://localhost:9090/SAVAGEWebServices/X3DWebService
 79 ?wsdl</j.2:wsdlDocument>
 80 <j.2:owlsProcess>
 81 <j.1:AtomicProcess rdf:ID="getX3DModelProcess">
 82 <j.1:hasInput rdf:resource="#url"/>
 83 <j.0:describes rdf:resource="#getX3DModelService"/>
 84 <rdfs:label rdf:datatype=
 85 "http://www.w3.org/2001/XMLSchema#string"
 86 >getX3DModelProcess</rdfs:label>
 87 <j.1:hasOutput rdf:resource="#return"/>
 88 </j.1:AtomicProcess>
 89 </j.2:owlsProcess>
 90 <j.2:wsdlOperation>
 91 <j.2:WsdlOperationRef>
 92 <j.2:portType rdf:datatype=
 93 "http://www.w3.org/2001/XMLSchema#anyURI"
 94 >http://localhost:9090/SAVAGEWebServices/
 95 X3DWebService?wsdl#X3DWebServicePort
 96 </j.2:portType>
 97 <j.2:operation rdf:datatype=
 98 "http://www.w3.org/2001/XMLSchema#anyURI"
 99 >http://localhost:9090/SAVAGEWebServices/
100 X3DWebService?wsdl#getX3DModel</j.2:operation>
101 </j.2:WsdlOperationRef>
102 </j.2:wsdlOperation>
103 <j.2:wsdlInputMessage rdf:datatype=
104 "http://www.w3.org/2001/XMLSchema#anyURI"
105 >http://X3DWSMethod/#getX3DModel</j.2:wsdlInputMessage>
106 </j.2:WsdlAtomicProcessGrounding>
107 </j.2:hasAtomicProcessGrounding>
108 </j.2:WsdlGrounding>
109 </j.0:supports>
110 <j.0:describedBy rdf:resource="#getX3DModelProcess"/>
111 <j.0:presents>

158

112 <j.3:Profile rdf:ID="getX3DModelProfile">
113 <j.0:presentedBy rdf:resource="#getX3DModelService"/>
114 <j.3:textDescription rdf:datatype=
115 "http://www.w3.org/2001/XMLSchema#string"
116 >Auto generated from
117 http://localhost:9090/SAVAGEWebServices/
118 X3DWebService?wsdl</j.3:textDescription>
119 <j.3:hasOutput rdf:resource="#return"/>
120 <j.3:hasInput rdf:resource="#url"/>
121 <j.3:serviceName rdf:datatype=
122 "http://www.w3.org/2001/XMLSchema#string"
123 >getX3DModel</j.3:serviceName>
124 </j.3:Profile>
125 </j.0:presents>
126 </j.0:Service>
127 </rdf:RDF>
128
129 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
130 http://protege.stanford.edu -->

e. findDESModel.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 4 xmlns:p3="http://www.example.org/owls/findDESModel.owl#"
 5 xmlns:j.0=
 6 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 7 xmlns:owl="http://www.w3.org/2002/07/owl#"
 8 xmlns:j.1=
 9 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 10 xmlns:j.2=
 11 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 12 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 13 xmlns:j.3=
 14 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 16 xml:base="http://www.example.org/owls/findDESModel.owl">
 17 <owl:Ontology rdf:about="">
 18 <owl:imports rdf:resource=
 19 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 20 <owl:imports rdf:resource=
 21 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 22 <owl:imports rdf:resource=
 23 "http://www.daml.org/services/owl-s/1.2/Process.owl"/>
 24 <owl:imports rdf:resource=
 25 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 26 </owl:Ontology>
 27 <j.1:Output rdf:ID="return">
 28 <j.1:parameterType rdf:datatype=
 29 "http://www.w3.org/2001/XMLSchema#anyURI"
 30 >http://www.w3.org/2001/XMLSchema#string
 31 </j.1:parameterType>
 32 <rdfs:label rdf:datatype=
 33 "http://www.w3.org/2001/XMLSchema#string"
 34 >return</rdfs:label>

159

 35 </j.1:Output>
 36 <j.2:WsdlAtomicProcessGrounding rdf:ID=
 37 "findDESModelAtomicProcessGrounding">
 38 <j.2:wsdlOperation>
 39 <j.2:WsdlOperationRef>
 40 <j.2:operation rdf:datatype=
 41 "http://www.w3.org/2001/XMLSchema#anyURI"
 42 >http://localhost:9090/SAVAGEWebServices/DESWebService
 43 ?wsdl#findDESModel</j.2:operation>
 44 <j.2:portType rdf:datatype=
 45 "http://www.w3.org/2001/XMLSchema#anyURI"
 46 >http://localhost:9090/SAVAGEWebServices/DESWebService?
 47 wsdl#DESWebServicePort</j.2:portType>
 48 </j.2:WsdlOperationRef>
 49 </j.2:wsdlOperation>
 50 <j.2:wsdlInputMessage rdf:datatype=
 51 "http://www.w3.org/2001/XMLSchema#anyURI"
 52 >http://DESWSMethod/#findDESModel</j.2:wsdlInputMessage>
 53 <j.2:wsdlInput>
 54 <j.2:WsdlInputMessageMap>
 55 <j.2:owlsParameter>
 56 <j.1:Input rdf:ID="x3dUrl">
 57 <j.1:parameterType rdf:datatype=
 58 "http://www.w3.org/2001/XMLSchema#anyURI"
 59 >http://www.w3.org/2001/XMLSchema#string
 60 </j.1:parameterType>
 61 <rdfs:label rdf:datatype=
 62 "http://www.w3.org/2001/XMLSchema#string"
 63 >x3dUrl</rdfs:label>
 64 </j.1:Input>
 65 </j.2:owlsParameter>
 66 <j.2:wsdlMessagePart rdf:datatype=
 67 "http://www.w3.org/2001/XMLSchema#anyURI"
 68 >http://localhost:9090/SAVAGEWebServices/DESWebService
 69 ?wsdl#x3dUrl</j.2:wsdlMessagePart>
 70 </j.2:WsdlInputMessageMap>
 71 </j.2:wsdlInput>
 72 <j.2:wsdlOutputMessage rdf:datatype=
 73 "http://www.w3.org/2001/XMLSchema#anyURI"
 74 >http://DESWSMethod/#findDESModelResponse
 75 </j.2:wsdlOutputMessage>
 76 <j.2:wsdlOutput>
 77 <j.2:WsdlOutputMessageMap>
 78 <j.2:wsdlMessagePart rdf:datatype=
 79 "http://www.w3.org/2001/XMLSchema#anyURI"
 80 >http://localhost:9090/SAVAGEWebServices/DESWebService
 81 ?wsdl#return</j.2:wsdlMessagePart>
 82 <j.2:owlsParameter rdf:resource="#return"/>
 83 </j.2:WsdlOutputMessageMap>
 84 </j.2:wsdlOutput>
 85 <j.2:wsdlDocument rdf:datatype=
 86 "http://www.w3.org/2001/XMLSchema#anyURI"
 87 >http://localhost:9090/SAVAGEWebServices/DESWebService?
 88 wsdl</j.2:wsdlDocument>
 89 <j.2:owlsProcess>
 90 <j.1:AtomicProcess rdf:ID="findDESModelProcess">
 91 <rdfs:label rdf:datatype=

160

 92 "http://www.w3.org/2001/XMLSchema#string"
 93 >findDESModelProcess</rdfs:label>
 94 <j.0:describes>
 95 <j.0:Service rdf:ID="findDESModelService">
 96 <j.0:supports>
 97 <j.2:WsdlGrounding rdf:ID="findDESModelGrounding">
 98 <j.2:hasAtomicProcessGrounding rdf:resource=
 99 "#findDESModelAtomicProcessGrounding"/>
100 <j.0:supportedBy rdf:resource=
101 "#findDESModelService"/>
102 </j.2:WsdlGrounding>
103 </j.0:supports>
104 <j.0:presents>
105 <j.3:Profile rdf:ID="findDESModelProfile">
106 <j.3:textDescription rdf:datatype=
107 "http://www.w3.org/2001/XMLSchema#string"
108 >Auto generated from
109 http://localhost:9090/SAVAGEWebServices/
110 DESWebService?wsdl</j.3:textDescription>
111 <j.3:hasInput rdf:resource="#x3dUrl"/>
112 <j.3:hasOutput rdf:resource="#return"/>
113 <j.3:serviceName rdf:datatype=
114 "http://www.w3.org/2001/XMLSchema#string"
115 >findDESModel</j.3:serviceName>
116 <j.0:presentedBy rdf:resource=
117 "#findDESModelService"/>
118 </j.3:Profile>
119 </j.0:presents>
120 <j.0:describedBy rdf:resource=
121 "#findDESModelProcess"/>
122 </j.0:Service>
123 </j.0:describes>
124 <j.1:hasInput rdf:resource="#x3dUrl"/>
125 <j.1:hasOutput rdf:resource="#return"/>
126 </j.1:AtomicProcess>
127 </j.2:owlsProcess>
128 </j.2:WsdlAtomicProcessGrounding>
129 </rdf:RDF>
130
131 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
132 http://protege.stanford.edu -->

f. getDESModel.owl

 1 <?xml version="1.0"?>
 2 <rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 4 xmlns:j.0=
 5 "http://www.daml.org/services/owl-s/1.2/Service.owl#"
 6 xmlns:owl="http://www.w3.org/2002/07/owl#"
 7 xmlns:j.1=
 8 "http://www.daml.org/services/owl-s/1.2/Process.owl#"
 9 xmlns:p4="http://www.example.org/owls/getDESModel.owl#"
 10 xmlns:j.2=
 11 "http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 12 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

161

 13 xmlns:j.3=
 14 "http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 16 xml:base="http://www.example.org/owls/getDESModel.owl">
 17 <owl:Ontology rdf:about="">
 18 <owl:imports rdf:resource=
 19 "http://www.daml.org/services/owl-s/1.2/Service.owl"/>
 20 <owl:imports rdf:resource=
 21 "http://www.daml.org/services/owl-s/1.2/Profile.owl"/>
 22 <owl:imports rdf:resource=
 23 "http://www.daml.org/services/owl-s/1.2/Process.owl"/>
 24 <owl:imports rdf:resource=
 25 "http://www.daml.org/services/owl-s/1.2/Grounding.owl"/>
 26 </owl:Ontology>
 27 <j.0:Service rdf:ID="getDESModelService">
 28 <j.0:presents>
 29 <j.3:Profile rdf:ID="getDESModelProfile">
 30 <j.3:hasInput>
 31 <j.1:Input rdf:ID="desUrl">
 32 <j.1:parameterType rdf:datatype=
 33 "http://www.w3.org/2001/XMLSchema#anyURI"
 34 >http://www.w3.org/2001/XMLSchema#string
 35 </j.1:parameterType>
 36 <rdfs:label rdf:datatype=
 37 "http://www.w3.org/2001/XMLSchema#string"
 38 >desUrl</rdfs:label>
 39 </j.1:Input>
 40 </j.3:hasInput>
 41 <j.3:hasOutput>
 42 <j.1:Output rdf:ID="return">
 43 <rdfs:label rdf:datatype=
 44 "http://www.w3.org/2001/XMLSchema#string"
 45 >return</rdfs:label>
 46 <j.1:parameterType rdf:datatype=
 47 "http://www.w3.org/2001/XMLSchema#anyURI"
 48 >http://www.w3.org/2001/XMLSchema#string
 49 </j.1:parameterType>
 50 </j.1:Output>
 51 </j.3:hasOutput>
 52 <j.0:presentedBy rdf:resource="#getDESModelService"/>
 53 <j.3:serviceName rdf:datatype=
 54 "http://www.w3.org/2001/XMLSchema#string"
 55 >getDESModel</j.3:serviceName>
 56 <j.3:textDescription rdf:datatype=
 57 "http://www.w3.org/2001/XMLSchema#string"
 58 >Auto generated from
 59 http://localhost:9090/SAVAGEWebServices/
 60 DESWebService?wsdl</j.3:textDescription>
 61 </j.3:Profile>
 62 </j.0:presents>
 63 <j.0:supports>
 64 <j.2:WsdlGrounding rdf:ID="getDESModelGrounding">
 65 <j.2:hasAtomicProcessGrounding>
 66 <j.2:WsdlAtomicProcessGrounding rdf:ID=
 67 "getDESModelAtomicProcessGrounding">
 68 <j.2:wsdlOutput>
 69 <j.2:WsdlOutputMessageMap>

162

 70 <j.2:wsdlMessagePart rdf:datatype=
 71 "http://www.w3.org/2001/XMLSchema#anyURI"
 72 >http://localhost:9090/SAVAGEWebServices/
 73 DESWebService?wsdl#return</j.2:
 74 wsdlMessagePart>
 75 <j.2:owlsParameter rdf:resource="#return"/>
 76 </j.2:WsdlOutputMessageMap>
 77 </j.2:wsdlOutput>
 78 <j.2:wsdlDocument rdf:datatype=
 79 "http://www.w3.org/2001/XMLSchema#anyURI"
 80 >http://localhost:9090/SAVAGEWebServices/DESWebService
 81 ?wsdl</j.2:wsdlDocument>
 82 <j.2:wsdlInput>
 83 <j.2:WsdlInputMessageMap>
 84 <j.2:owlsParameter rdf:resource="#desUrl"/>
 85 <j.2:wsdlMessagePart rdf:datatype=
 86 "http://www.w3.org/2001/XMLSchema#anyURI"
 87 >http://localhost:9090/SAVAGEWebServices/
 88 DESWebService?wsdl#desUrl</j.2:
 89 wsdlMessagePart>
 90 </j.2:WsdlInputMessageMap>
 91 </j.2:wsdlInput>
 92 <j.2:wsdlOutputMessage rdf:datatype=
 93 "http://www.w3.org/2001/XMLSchema#anyURI"
 94 >http://DESWSMethod/#getDESModelResponse
 95 </j.2:wsdlOutputMessage>
 96 <j.2:owlsProcess>
 97 <j.1:AtomicProcess rdf:ID="getDESModelProcess">
 98 <j.1:hasInput rdf:resource="#desUrl"/>
 99 <rdfs:label rdf:datatype=
100 "http://www.w3.org/2001/XMLSchema#string"
101 >getDESModelProcess</rdfs:label>
102 <j.1:hasOutput rdf:resource="#return"/>
103 <j.0:describes rdf:resource=
104 "#getDESModelService"/>
105 </j.1:AtomicProcess>
106 </j.2:owlsProcess>
107 <j.2:wsdlInputMessage rdf:datatype=
108 "http://www.w3.org/2001/XMLSchema#anyURI"
109 >http://DESWSMethod/#getDESModel
110 </j.2:wsdlInputMessage>
111 <j.2:wsdlOperation>
112 <j.2:WsdlOperationRef>
113 <j.2:operation rdf:datatype=
114 "http://www.w3.org/2001/XMLSchema#anyURI"
115 >http://localhost:9090/SAVAGEWebServices/
116 DESWebService?wsdl#getDESModel</j.2:operation>
117 <j.2:portType rdf:datatype=
118 "http://www.w3.org/2001/XMLSchema#anyURI"
119 >http://localhost:9090/SAVAGEWebServices/
120 DESWebService?wsdl#DESWebServicePort
121 </j.2:portType>
122 </j.2:WsdlOperationRef>
123 </j.2:wsdlOperation>
124 </j.2:WsdlAtomicProcessGrounding>
125 </j.2:hasAtomicProcessGrounding>
126 <j.0:supportedBy rdf:resource="#getDESModelService"/>

163

127 </j.2:WsdlGrounding>
128 </j.0:supports>
129 <j.0:describedBy rdf:resource="#getDESModelProcess"/>
130 </j.0:Service>
131 </rdf:RDF>
132
133 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
134 http://protege.stanford.edu -->

2. WSBPEL FOR SAVAGE COMPOSITE PROCESS

The WSBPEL composite process for SAVAGE web services is constructed using

NetBeans. NetBeans dynamically generates WSBPEL description in XML.

compositeProcess.bpel describes the composite process. The remaning WSDL files are

components required for the composite process. WSDL files for X3D and DES web

services, which are listed in Appendix A, are also used in WSBPEL composite process.

a. compositeProcess.bpel

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <process
 3 name="compositeProcess"
 4 targetNamespace=
 5 "http://enterprise.netbeans.org/bpel/
 6 BpelModule1/compositeProcess"
 7 xmlns=
 8 "http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 9 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 10 xmlns:tns=
 11 "http://enterprise.netbeans.org/bpel/BpelModule1/
 12 compositeProcess"
 13 xmlns:sxt="http://www.sun.com/wsbpel/2.0/process/
 14 executable/SUNExtension/Trace"
 15 xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/
 16 executable/SUNExtension/Editor"
 17 xmlns:ns0="http://docs.oasis-open.org/wsbpel/2.0/
 18 process/executable">
 19 <import namespace=
 20
"http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"
 21 location="X3DWebServiceServiceWrapper.wsdl"
 22 importType="http://schemas.xmlsoap.org/wsdl/"/>
 23 <import namespace="http://X3DWSMethod/"
 24 location="X3DWebServiceService.wsdl"
 25 importType="http://schemas.xmlsoap.org/wsdl/"/>
 26 <import namespace=
 27 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
 28 location="SavageBpelX3DDESSeqComposite.wsdl"
 29 importType="http://schemas.xmlsoap.org/wsdl/"/>
 30 <import namespace=

164

 31 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"
 32 location="SavageGetX3DDESDecision.wsdl"
 33 importType="http://schemas.xmlsoap.org/wsdl/"/>
 34 <import namespace=
 35
"http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"
 36 location="X3DWebServiceServiceWrapper.wsdl"
 37 importType="http://schemas.xmlsoap.org/wsdl/"/>
 38 <import namespace=
 39
"http://enterprise.netbeans.org/bpel/DESWebServiceServiceWrapper"
 40 location="DESWebServiceServiceWrapper.wsdl"
 41 importType="http://schemas.xmlsoap.org/wsdl/"/>
 42 <import namespace="http://DESWSMethod/"
 43 location="DESWebServiceService.wsdl"
 44 importType="http://schemas.xmlsoap.org/wsdl/"/>
 45 <partnerLinks>
 46 <partnerLink name="SavageBpelX3DDESSeqLink"
 47 xmlns:tns=
 48
"http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
 49 partnerLinkType="tns:SavageBpelX3DDESSeqComposite"
 50 myRole="SavageBpelX3DDESSeqCompositePortTypeRole"/>
 51 <partnerLink name="X3DWebServiceLinkForComposite"
 52 xmlns:tns=
 53 "http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"
 54 partnerLinkType="tns:X3DWebServiceLinkForComposite"
 55 myRole="X3DWebServiceRole"
 56 partnerRole="X3DWebPartnerServiceRole"/>
 57 <partnerLink name="DESWSLinkComposite"
 58 xmlns:tns=
 59 "http://enterprise.netbeans.org/bpel/DESWebServiceServiceWrapper"
 60 partnerLinkType="tns:DESWSLinkComposite"
 61 myRole="DESWebServiceRole"
 62 partnerRole="DESWebPartnerServiceRole"/>
 63 <partnerLink name="SavageDESX3DDecision"
 64 xmlns:tns=
 65 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"
 66 partnerLinkType="tns:SavageGetX3DDESDecision"
 67 myRole="SavageGetX3DDESDecisionPortTypeRole"/>
 68 </partnerLinks>
 69 <variables>
 70 <variable
 71 name="GetDESInvokeOut"
 72 xmlns:tns="http://DESWSMethod/"
 73 messageType="tns:getDESModelResponse"/>
 74 <variable
 75 name="GetDESInvokeIn"
 76 xmlns:tns="http://DESWSMethod/"
 77 messageType="tns:getDESModel"/>
 78 <variable
 79 name="GetX3DInvokeOut"
 80 xmlns:tns="http://X3DWSMethod/"
 81 messageType="tns:getX3DModelResponse"/>
 82 <variable
 83 name="GetX3DInvokeIn"
 84 xmlns:tns="http://X3DWSMethod/"

165

 85 messageType="tns:getX3DModel"/>
 86 <variable
 87 name="FindDESInvokeOut"
 88 xmlns:tns="http://DESWSMethod/"
 89 messageType="tns:findDESModelResponse"/>
 90 <variable
 91 name="FindDESInvokeIn"
 92 xmlns:tns="http://DESWSMethod/"
 93 messageType="tns:findDESModel"/>
 94 <variable
 95 name="FindX3DInvokeOut"
 96 xmlns:tns="http://X3DWSMethod/"
 97 messageType="tns:findX3DModelResponse"/>
 98 <variable name="FindX3DInvokeIn"
 99 xmlns:tns="http://X3DWSMethod/"
100 messageType="tns:findX3DModel"/>
101 <variable name="SavageBpelX3DDESSeqCompositeOperationOut"
102 xmlns:tns=
103 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
104 messageType=
105 "tns:SavageBpelX3DDESSeqCompositeOperationResponse"/>
106 <variable name="SavageBpelX3DDESSeqCompositeOperationIn"
107 xmlns:tns=
108 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
109 messageType=
110 "tns:SavageBpelX3DDESSeqCompositeOperationRequest"/>
111 </variables>
112 <sequence>
113 <receive name="startComposite" createInstance="yes"
114 partnerLink="SavageBpelX3DDESSeqLink"
115 operation="SavageBpelX3DDESSeqCompositeOperation"
116 xmlns:tns=
117
"http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
118 portType="tns:SavageBpelX3DDESSeqCompositePortType"
119 variable="SavageBpelX3DDESSeqCompositeOperationIn"/>
120 <assign name="Assign1">
121 <copy>
122 <from variable=
123 "SavageBpelX3DDESSeqCompositeOperationIn"
124 part="searchString"/>
125 <to>$FindX3DInvokeIn.parameters/searchTerm</to>
126 </copy>
127 </assign>
128 <invoke name="InvokeX3DFind"
129 partnerLink="X3DWebServiceLinkForComposite"
130 operation="findX3DModel"
131 xmlns:tns="http://X3DWSMethod/"
132 portType="tns:X3DWebService"
133 inputVariable="FindX3DInvokeIn"
134 outputVariable="FindX3DInvokeOut"/>
135 <assign name="Assign2">
136 <copy>
137 <from>ns0:doXslTransform
138 ('urn:stylesheets:transformX3DUrlList',
139 $FindX3DInvokeOut.parameters/return)</from>
140 <to>$GetX3DInvokeIn.parameters/url</to>

166

141 </copy>
142 <copy>
143 <from>ns0:doXslTransform('urn:stylesheets:
144 transformX3DUrlList',$FindX3DInvokeOut.
145 parameters/return)</from>
146 <to variable="FindDESInvokeIn" part="parameters"/>
147 </copy>
148 </assign>
149 <if name="If">
150 <condition>
151 $SavageBpelX3DDESSeqCompositeOperationIn.
152 isGetX3DModel</condition>
153 <invoke name="InvokeX3DGet"
154 partnerLink="X3DWebServiceLinkForComposite"
155 operation="getX3DModel"
156 xmlns:tns="http://X3DWSMethod/"
157 portType="tns:X3DWebService"
158 inputVariable="GetX3DInvokeIn"
159 outputVariable="GetX3DInvokeOut"/>
160 <elseif>
161 <condition>
162 $SavageBpelX3DDESSeqCompositeOperationIn.
163 isFindGetDESModel</condition>
164 <sequence name="Sequence1">
165 <invoke name="InvokeFindDES"
166 partnerLink="DESWSLinkComposite"
167 operation="findDESModel"
168 xmlns:tns="http://DESWSMethod/"
169 portType="tns:DESWebService"
170 inputVariable="FindDESInvokeIn"
171 outputVariable="FindDESInvokeOut"/>
172 <assign name="Assign3">
173 <copy>
174 <from>$FindDESInvokeOut.
175 parameters/return</from>
176 <to>$GetDESInvokeIn.
177 parameters/desUrl</to>
178 </copy>
179 </assign>
180 <invoke name="InvokeGetDES"
181 partnerLink="DESWSLinkComposite"
182 operation="getDESModel"
183 xmlns:tns="http://DESWSMethod/"
184 portType="tns:DESWebService"
185 inputVariable="GetDESInvokeIn"
186 outputVariable="GetDESInvokeOut"/>
187 </sequence>
188 </elseif>
189 <else>
190 <empty name="doNothing"/>
191 </else>
192 </if>
193 <reply name="endComposite"
194 partnerLink="SavageBpelX3DDESSeqLink"
195 operation="SavageBpelX3DDESSeqCompositeOperation"
196 xmlns:tns=
197 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"

167

198 portType="tns:SavageBpelX3DDESSeqCompositePortType"
199 variable="SavageBpelX3DDESSeqCompositeOperationOut"/>
200 </sequence>
201 </process>

b. DESWebServiceServiceWrapper.wsdl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2
 3 <definitions
 4 xmlns="http://schemas.xmlsoap.org/wsdl/"
 5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 6 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 8 name="DESWebServiceServiceWrapper"
 9 targetNamespace=
10 "http://enterprise.netbeans.org/bpel/
11 DESWebServiceServiceWrapper"
12 xmlns:tns=
13 "http://enterprise.netbeans.org/bpel/
14 DESWebServiceServiceWrapper"
15 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
16 xmlns:ns="http://DESWSMethod/">
17 <import location="DESWebServiceService.wsdl"
18 namespace="http://DESWSMethod/"/>
19 <plnk:partnerLinkType
20 name="DESWSLinkComposite">
21 <plnk:role name="DESWebServiceRole"
22 portType="ns:DESWebService"/>
23 <plnk:role name="DESWebPartnerServiceRole"
24 portType="ns:DESWebService"/>
25 </plnk:partnerLinkType>
26 </definitions>

c. SavageBpelX3DDESSeqComposite.wsdl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <definitions name="SavageBpelX3DDESSeqComposite"
 3 targetNamespace=
 4 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DDESSeqComposite"
 5 xmlns="http://schemas.xmlsoap.org/wsdl/"
 6 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 8 xmlns:tns="http://j2ee.netbeans.org/wsdl/
 9 SavageBpelX3DDESSeqComposite"
10 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
11 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
12 <types/>
13 <message name="SavageBpelX3DDESSeqCompositeOperationRequest">
14 <part name="searchString" type="xsd:string"/>
15 <part name="isGetX3DModel" type="xsd:boolean"/>
16 <part name="isFindGetDESModel" type="xsd:boolean"/>
17 </message>
18 <message name="SavageBpelX3DDESSeqCompositeOperationResponse">
19 <part name="resultString" type="xsd:string"/>
20 </message>

168

21 <portType name="SavageBpelX3DDESSeqCompositePortType">
22 <operation name="SavageBpelX3DDESSeqCompositeOperation">
23 <input name="input1"
24 message=
25 "tns:SavageBpelX3DDESSeqCompositeOperationRequest"/>
26 <output name="output1"
27 message=
28
"tns:SavageBpelX3DDESSeqCompositeOperationResponse"/>
29 </operation>
30 </portType>
31 <binding name="SavageBpelX3DDESSeqCompositeBinding"
32 type="tns:SavageBpelX3DDESSeqCompositePortType">
33 <soap:binding style="rpc"
34 transport="http://schemas.xmlsoap.org/soap/http"/>
35 <operation name="SavageBpelX3DDESSeqCompositeOperation">
36 <soap:operation/>
37 <input name="input1">
38 <soap:body use="literal"
39 namespace=
40 "http://j2ee.netbeans.org/wsdl/
41 SavageBpelX3DDESSeqComposite"/>
42 </input>
43 <output name="output1">
44 <soap:body use="literal"
45 namespace="http://j2ee.netbeans.org/wsdl/
46 SavageBpelX3DDESSeqComposite"/>
47 </output>
48 </operation>
49 </binding>
50 <service name="SavageBpelX3DDESSeqCompositeService">
51 <port name="SavageBpelX3DDESSeqCompositePort"
52 binding="tns:SavageBpelX3DDESSeqCompositeBinding">
53 <soap:address location=
54 "http://localhost:${HttpDefaultPort}/
55 SavageBpelX3DDESSeqCompositeService/
56 SavageBpelX3DDESSeqCompositePort"/>
57 </port>
58 </service>
59 <plnk:partnerLinkType name="SavageBpelX3DDESSeqComposite">
60 <!-- A partner link type is automatically generated
61 when a new port type is added. Partner link types are
62 used by BPEL processes.
63 In a BPEL process, a partner link represents the
64 interaction between the BPEL process and a partner
65 service. Each partner link is associated with a
66 partner link type.
67 A partner link type characterizes the conversational
68 relationship between two services. The partner link
69 type can have one or two roles.-->
70 <plnk:role
71 name="SavageBpelX3DDESSeqCompositePortTypeRole"
72 portType="tns:SavageBpelX3DDESSeqCompositePortType"/>
73 </plnk:partnerLinkType>
74 </definitions>

169

d. SavageBpelX3DSeq.wsdl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <definitions name="SavageBpelX3DSeq" targetNamespace
 3 ="http://j2ee.netbeans.org/wsdl/SavageBpelX3DSeq"
 4 xmlns="http://schemas.xmlsoap.org/wsdl/"
 5 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 6 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 7 xmlns:tns="http://j2ee.netbeans.org/wsdl/SavageBpelX3DSeq"
 8 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 9 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
10 <types/>
11 <message name="SavageBpelX3DSeqOperationRequest">
12 <part name="part1" type="xsd:string"/>
13 </message>
14 <message name="SavageBpelX3DSeqOperationResponse">
15 <part name="part1" type="xsd:string"/>
16 </message>
17 <portType name="SavageBpelX3DSeqPortType">
18 <operation name="SavageBpelX3DSeqOperation">
19 <input name="input1"
20 message="tns:SavageBpelX3DSeqOperationRequest"/>
21 <output name="output1"
22 message="tns:SavageBpelX3DSeqOperationResponse"/>
23 </operation>
24 </portType>
25 <binding name="SavageBpelX3DSeqBinding"
26 type="tns:SavageBpelX3DSeqPortType">
27 <soap:binding style="rpc"
28 transport="http://schemas.xmlsoap.org/soap/http"/>
29 <operation name="SavageBpelX3DSeqOperation">
30 <soap:operation/>
31 <input name="input1">
32 <soap:body use="literal"
33 namespace=
34 "http://j2ee.netbeans.org/wsdl/SavageBpelX3DSeq"/>
35 </input>
36 <output name="output1">
37 <soap:body use="literal"
38 namespace
39 ="http://j2ee.netbeans.org/wsdl/SavageBpelX3DSeq"/>
40 </output>
41 </operation>
42 </binding>
43 <service name="SavageBpelX3DSeqService">
44 <port name="SavageBpelX3DSeqPort"
45 binding="tns:SavageBpelX3DSeqBinding">
46 <soap:address location=
47 "http://localhost:${HttpDefaultPort}
48 /SavageBpelX3DSeqService/SavageBpelX3DSeqPort"/>
49 </port>
50 </service>
51 <plnk:partnerLinkType name="SavageBpelX3DSeq">
52 <!-- A partner link type is automatically generated
53 when a new port type is added. Partner link types
54 are used by BPEL processes. In a BPEL process, a partner

170

55 link represents the interaction between the BPEL process
56 and a partner service. Each partner link is associated
57 with a partner link type.
58 A partner link type characterizes the conversational
59 relationship between two services. The partner link
60 type can have one or two roles.-->
61 <plnk:role name="SavageBpelX3DSeqPortTypeRole"
62 portType="tns:SavageBpelX3DSeqPortType"/>
63 </plnk:partnerLinkType>
64 </definitions>

e. SavageGetX3DDESDecision.wsdl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <definitions name="SavageGetX3DDESDecision"
 3 targetNamespace=
 4 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"
 5 xmlns="http://schemas.xmlsoap.org/wsdl/"
 6 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 8 xmlns:tns=
 9 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"
10 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
11 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
12 <types/>
13 <message name="SavageGetX3DDESDecisionOperationRequest">
14 <part name="isMatchDES" type="xsd:boolean"/>
15 </message>
16 <message name="SavageGetX3DDESDecisionOperationResponse"/>
17 <portType name="SavageGetX3DDESDecisionPortType">
18 <operation name="SavageGetX3DDESDecisionOperation">
19 <input name="input1"
20 message=
21 "tns:SavageGetX3DDESDecisionOperationRequest"/>
22 <output name="output1"
23 message=
24 "tns:SavageGetX3DDESDecisionOperationResponse"/>
25 </operation>
26 </portType>
27 <binding name="SavageGetX3DDESDecisionBinding"
28 type="tns:SavageGetX3DDESDecisionPortType">
29 <soap:binding style="rpc"
30 transport="http://schemas.xmlsoap.org/soap/http"/>
31 <operation name="SavageGetX3DDESDecisionOperation">
32 <soap:operation/>
33 <input name="input1">
34 <soap:body use="literal"
35 namespace=
36 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"/>
37 </input>
38 <output name="output1">
39 <soap:body use="literal"
40 namespace=
41 "http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"/>
42 </output>
43 </operation>

171

44 </binding>
45 <service name="SavageGetX3DDESDecisionService">
46 <port name="SavageGetX3DDESDecisionPort"
47 binding="tns:SavageGetX3DDESDecisionBinding">
48 <soap:address
49 location="http://localhost:${HttpDefaultPort}
50 /SavageGetX3DDESDecisionService/
51 SavageGetX3DDESDecisionPort"/>
52 </port>
53 </service>
54 <plnk:partnerLinkType name="SavageGetX3DDESDecision">
55 <!-- A partner link type is automatically generated
56 when a new port type is added. Partner link types are
57 used by BPEL processes. In a BPEL process, a partner link
58 represents the interaction between the BPEL process and
59 a partner service. Each partner link is associated with
60 a partner link type. A partner link type characterizes
61 the conversational relationship between two services.
62 The partner link type can have one or two roles.-->
63 <plnk:role name="SavageGetX3DDESDecisionPortTypeRole"
64 portType="tns:SavageGetX3DDESDecisionPortType"/>
65 </plnk:partnerLinkType>
66 </definitions>

f. X3DWebServiceServiceWrapper.wsdl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2
 3 <definitions
 4 xmlns="http://schemas.xmlsoap.org/wsdl/"
 5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 6 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 8 name="X3DWebServiceServiceWrapper"
 9 targetNamespace=
10 "http://enterprise.netbeans.org/bpel/
11 X3DWebServiceServiceWrapper"
12 xmlns:tns="http://enterprise.netbeans.org/bpel/
13 X3DWebServiceServiceWrapper"
14 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
15 xmlns:ns="http://X3DWSMethod/">
16 <import location="X3DWebServiceService.wsdl"
17 namespace="http://X3DWSMethod/"/>
18 <plnk:partnerLinkType name="X3DWebServiceLinkType">
19 <plnk:role name="X3DWebServiceRole"
20 portType="ns:X3DWebService"/>
21 <plnk:role name="X3DWebPartnerServiceRole"
22 portType="ns:X3DWebService"/>
23 </plnk:partnerLinkType>
24 <plnk:partnerLinkType name="X3DWebServiceLinkForComposite">
25 <plnk:role name="X3DWebServiceRole"
26 portType="ns:X3DWebService"/>
27 <plnk:role name="X3DWebPartnerServiceRole"
28 portType="ns:X3DWebService"/>
29 </plnk:partnerLinkType>
30 </definitions>

172

g. transformX3DUrlList.xsl

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <xsl:stylesheet version="1.0"
 3 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 4 <xsl:output method="text"/>
 5 <xsl:template match="/x3-dFind-result-entity">
 6 <xsl:for-each select="./result-set">
 7 <xsl:if test=".=../result-set[1]">
 8 <xsl:value-of select="./value"/>
 9 <xsl:text></xsl:text>
10 </xsl:if>
11 </xsl:for-each>
12 </xsl:template>
13 </xsl:stylesheet>

173

APPENDIX C. RETRIEVE EXAMPLES

1. SAVAGE WEB SERVICES SOURCE CODE

Online at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServices

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServices/src

War file at (~11.2 MB)

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServices/dist/

SAVAGEWebServices.war

2. SAVAGE WEB SERVICES UML DIAGRAMS

Online at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEModel/report/inde

x.html

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEModel/

3. JSP CLIENT DEMO URL

Online at

https://savage.nps.edu/SavageWSClientWebAppProdTest/

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServicesClie

nt/

174

THIS PAGE INTENTIONALLY LEFT BLANK

175

APPENDIX D. PRESENTATION SLIDESET

176

177

178

179

180

181

LIST OF REFERENCES

Alesso, Smith. Developing Semantic Web Services. A K Peters Ltd, 2004.

Bell, Cesare, Lycett. Semantic Web Services Architecture for Simulation Model Reuse.

IEEE 2007.

Benatallah, Casati, Grigori, Nezhad, Toumani. Developing Adapters for Web Services
Integration. CAiSE 2005.

Benatallah, Nezhad. Interoperability in Semantic Web Services. SWSWPC 2004.

Berners-Lee. Weaving the Web. HarperCollins Publishers Inc., 2000.

Brickley, Guha, McBride. RDF Vocabulary Description Language 1.0: RDF Schema.

W3C Recommendation, 2004.

Brutzman and Daly. Extensible 3D Graphics For Web Authors. Morgan Kaufmann

Elsevier Inc., 2007.

Burstein, Bussler, Zaremba, Finin, Huhns, Paolucci, Sheth, Williams. A Semantic Web

Services Architecture, IEEE 2005.

Charfi, Mezini. Aspect-Oriented Web Service Composition with AO4BPEL. 2004.

Childers. Applying Semantic Web Concepts to Support Net-Centric Warfare Using the

Tactical Assessment Markup Language (TAML). Master’s Thesis, Naval
Postgraduate School, Monterey, California, 2006.

Erl. Service-Oriented Architecture (Concepts, Technology, and Design). SOA Systems

Inc, 2005.

Erl. Service-Oriented Architecture (Principles of Service Design). SOA Systems Inc,

2008.

Bruijin, Bussler, Domingue, Fensel, Hepp, Kifer, Koig-Ries, Kopecky, Lara, Oren,

Polleres, Scicluna, Stollberg, Roman, Lausen, Keller. Web Services Modeling
Ontology (WSMO), D2 V1.2. 2005.

Foo, Wong, Ni, Leong M., Leong H. Developing a Horizon Scanning System for Early

Warning. 12th ICCRTS 2007.

Gamma, Helm, Johnson, Vlissides. Design Patterns, Elements of Reusable Object-
 Oriented Software. Addison-Wesley, 1995.

182

Carey. XML 2nd Edition. Thomson Learning Inc., 2007.

Gorton. Essential Software Architecture. Springer-Verlag Berlin Heidelberg, 2006.

Haller, Cimpian, Mocan, Oren. WSMX – A Semantic Service-Oriented Architecture.

ICWS 2005.

Hammer, Timmerman. Fundamentals of Software Integration. Jones and Bartlett
 Publishers Inc., 2008.

Hofmeister, Nord, Soni. Applied Software Architecture. Addison Wesley Longman Inc.,

2000.

K. Harikumar, Lee, Yang, Kim, Kang. A Model for Application Integration using Web

Services. IEEE 2005.

Klyne, Carroll, McBride. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation, 2004.

Lara, Roman, Polleres, Fensel. A Conceptual Comparison of WSMO and OWL-S.

ECOWS 2004.

Maassen. Applied Java Patterns. Sun Microsystems Inc., 2002.

Martin, Paolucci, mcIIraith, Burstein. Bringing Semantics to Web Services: The OWL-S

Approach. SWSWPC 2004.

Martin, Burstein, Hobbs, Lassila, McDermott, Mcllraith, Narayanan, Paolucci, Parsia,

Payne, Payne, Sirin, Srinivasan, Sycara. OWL-S: Semantic Markup for Web
Services. W3C Submission, 2004.

Matthews. Bridging the SOA Divide for Deployed Assets. 2008.

Nagappan, Skoczylas, Sriganesh. Developing Java Web Services. Wiley Publishing Inc.,

2003.

Paschke, Hirtle, Ginsberg, Patranjan, McCabe. 2008. “RIF Use Cases and

Requirements”. W3C Working Draft, 2008.

Rao, Su. A Survey of Automated Web Service Composition Methods. SWSWPC 2004.

Rauch. Savage Modeling Analysis Language (SMAL): Metadata for Tactical Simulations

and X3D Visualizations. 2006.

Sanchez, Acuna, Cavero, Marcos. Towards a UML-Compliant Semantic Web Services

Development.

183

Schruben. Simulation Modeling with Event Graphs. ACM 1983.
-

Shafiq, Ding, Fensel. Bridging Multi Agent Systems and Web Services: towards

interoperability between Software Agents and Semantic Web Services. IEEE
2006.

Skogan, Gronmo, Solheim. Web Service Composition in UML. IEEE 2004.

William. Document-Centric XML Encryption and Authorization for Coalition

Messaging. NPS Thesis Proposal 2008.

Wu, Chang. Comparison of Web Services Architectures Based on Architecture Quality

Properties. IEEE 2005.

Zhang, Arpinar, Aleman-Meza. Automatic Composition of Semantic Web Services.

184

THIS PAGE INTENTIONALLY LEFT BLANK

185

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

3. Don Brutzman

Naval Postgraduate School

Monterey, California

4. Don McGregor

Naval Postgraduate School

Monterey, California

5. Curtis Blais

Naval Postgraduate School

Monterey, California

6. Christopher Priebe

G2 Software Systems

SPAWAR Systems Center

San Diego, California

7. Tim Faulkuer

TCNI

Middletown, Maryland

186

8. Professor Yeo Tat Soon, Director

Temasek Defence Systems Institute

National University of Singapore

Singapore

9. Tan Lai Poh (Ms), Assistant Manager

Temasek Defence Systems Institute

National University of Singapore

Singapore

